flatland-random-sparse-small-tree-fc-cctransformer: run: CcTransformer env: flatland_sparse stop: timesteps_total: 10000000 # 1e7 checkpoint_freq: 10 checkpoint_at_end: True keep_checkpoints_num: 5 checkpoint_score_attr: episode_reward_mean config: clip_rewards: True clip_param: 0.1 vf_clip_param: 500.0 entropy_coeff: 0.01 # effective batch_size: train_batch_size * num_agents_in_each_environment [5, 10] # see https://github.com/ray-project/ray/issues/4628 train_batch_size: 1000 # 5000 rollout_fragment_length: 50 # 100 sgd_minibatch_size: 100 # 500 num_sgd_iter: 10 num_workers: 2 num_envs_per_worker: 5 batch_mode: truncate_episodes observation_filter: NoFilter vf_share_layers: True lr: 0.0001 vf_loss_coeff: 0.000001 num_gpus: 1 env_config: observation: tree resolve_deadlocks: false observation_config: max_depth: 2 shortest_path_max_depth: 30 generator: sparse_rail_generator generator_config: small_v0 wandb: project: flatland entity: tags: ["small_v0", "tree_obs"] # TODO should be set programmatically model: custom_model: cc_transformer custom_options: max_num_agents: 15 actor: activation_fn: relu hidden_layers: - 512 - 512 - 512 critic: centralized: True embedding_size: 32 num_heads: 4 d_model: 32 use_scale: True activation_fn: relu hidden_layers: - 512 - 512 - 512 embedding: activation_fn: relu hidden_layers: - 512 - 512 - 512 fcnet_activation: relu fcnet_hiddens: [256, 256] vf_share_layers: True # False