custom_observation_example_02_SingleAgentNavigationObs.py 3.92 KB
Newer Older
1
2
3
4
import getopt
import random
import sys
import time
5
from typing import List
6
7
8

import numpy as np

9
from flatland.core.grid.grid4_utils import get_new_position
10
11
12
13
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.rail_env import RailEnv
from flatland.envs.rail_generators import complex_rail_generator
from flatland.envs.schedule_generators import complex_schedule_generator
u214892's avatar
u214892 committed
14
from flatland.utils.misc import str2bool
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from flatland.utils.rendertools import RenderTool

random.seed(100)
np.random.seed(100)


class SingleAgentNavigationObs(TreeObsForRailEnv):
    """
    We derive our bbservation builder from TreeObsForRailEnv, to exploit the existing implementation to compute
    the minimum distances from each grid node to each agent's target.

    We then build a representation vector with 3 binary components, indicating which of the 3 available directions
    for each agent (Left, Forward, Right) lead to the shortest path to its target.
    E.g., if taking the Left branch (if available) is the shortest route to the agent's target, the observation vector
    will be [1, 0, 0].
    """

    def __init__(self):
        super().__init__(max_depth=0)
        self.observation_space = [3]

    def reset(self):
        # Recompute the distance map, if the environment has changed.
        super().reset()

40
    def get(self, handle: int = 0) -> List[int]:
41
42
43
44
45
46
47
48
49
50
51
52
53
54
        agent = self.env.agents[handle]

        possible_transitions = self.env.rail.get_transitions(*agent.position, agent.direction)
        num_transitions = np.count_nonzero(possible_transitions)

        # Start from the current orientation, and see which transitions are available;
        # organize them as [left, forward, right], relative to the current orientation
        # If only one transition is possible, the forward branch is aligned with it.
        if num_transitions == 1:
            observation = [0, 1, 0]
        else:
            min_distances = []
            for direction in [(agent.direction + i) % 4 for i in range(-1, 2)]:
                if possible_transitions[direction]:
55
                    new_position = get_new_position(agent.position, direction)
u214892's avatar
u214892 committed
56
57
                    min_distances.append(
                        self.env.distance_map.get()[handle, new_position[0], new_position[1], direction])
58
59
60
61
62
63
64
65
66
67
68
                else:
                    min_distances.append(np.inf)

            observation = [0, 0, 0]
            observation[np.argmin(min_distances)] = 1

        return observation


def main(args):
    try:
69
        opts, args = getopt.getopt(args, "", ["sleep-for-animation=", ""])
70
71
72
    except getopt.GetoptError as err:
        print(str(err))  # will print something like "option -a not recognized"
        sys.exit(2)
73
    sleep_for_animation = True
74
    for o, a in opts:
75
        if o in ("--sleep-for-animation"):
u214892's avatar
u214892 committed
76
            sleep_for_animation = str2bool(a)
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        else:
            assert False, "unhandled option"

    env = RailEnv(width=7,
                  height=7,
                  rail_generator=complex_rail_generator(nr_start_goal=10, nr_extra=1, min_dist=5, max_dist=99999,
                                                        seed=0),
                  schedule_generator=complex_schedule_generator(),
                  number_of_agents=1,
                  obs_builder_object=SingleAgentNavigationObs())

    obs = env.reset()
    env_renderer = RenderTool(env, gl="PILSVG")
    env_renderer.render_env(show=True, frames=True, show_observations=True)
    for step in range(100):
        action = np.argmax(obs[0]) + 1
        obs, all_rewards, done, _ = env.step({0: action})
        print("Rewards: ", all_rewards, "  [done=", done, "]")
        env_renderer.render_env(show=True, frames=True, show_observations=True)
96
        if sleep_for_animation:
97
98
99
100
101
102
103
104
105
106
107
            time.sleep(0.1)
        if done["__all__"]:
            break
    env_renderer.close_window()


if __name__ == '__main__':
    if 'argv' in globals():
        main(argv)
    else:
        main(sys.argv[1:])