test_flatland_malfunction.py 21.3 KB
Newer Older
u214892's avatar
u214892 committed
1
import random
2
from typing import Dict, List
u214892's avatar
u214892 committed
3

4
import numpy as np
5
from test_utils import Replay, ReplayConfig, run_replay_config, set_penalties_for_replay
6

7
from flatland.core.env_observation_builder import ObservationBuilder
u214892's avatar
u214892 committed
8
from flatland.core.grid.grid4 import Grid4TransitionsEnum
9
from flatland.core.grid.grid4_utils import get_new_position
u214892's avatar
u214892 committed
10
from flatland.envs.agent_utils import RailAgentStatus
u214892's avatar
u214892 committed
11
from flatland.envs.rail_env import RailEnv, RailEnvActions
12
13
14
from flatland.envs.rail_generators import rail_from_grid_transition_map
from flatland.envs.schedule_generators import random_schedule_generator
from flatland.utils.simple_rail import make_simple_rail2
15
16


17
class SingleAgentNavigationObs(ObservationBuilder):
18
    """
19
    We build a representation vector with 3 binary components, indicating which of the 3 available directions
20
21
22
23
24
25
    for each agent (Left, Forward, Right) lead to the shortest path to its target.
    E.g., if taking the Left branch (if available) is the shortest route to the agent's target, the observation vector
    will be [1, 0, 0].
    """

    def __init__(self):
26
        super().__init__()
27
28

    def reset(self):
29
        pass
30

31
    def get(self, handle: int = 0) -> List[int]:
32
33
        agent = self.env.agents[handle]

u214892's avatar
u214892 committed
34
        if agent.status == RailAgentStatus.READY_TO_DEPART:
u214892's avatar
u214892 committed
35
            agent_virtual_position = agent.initial_position
u214892's avatar
u214892 committed
36
        elif agent.status == RailAgentStatus.ACTIVE:
u214892's avatar
u214892 committed
37
            agent_virtual_position = agent.position
u214892's avatar
u214892 committed
38
        elif agent.status == RailAgentStatus.DONE:
u214892's avatar
u214892 committed
39
            agent_virtual_position = agent.target
u214892's avatar
u214892 committed
40
41
42
        else:
            return None

u214892's avatar
u214892 committed
43
        possible_transitions = self.env.rail.get_transitions(*agent_virtual_position, agent.direction)
44
45
46
47
48
49
50
51
52
53
54
        num_transitions = np.count_nonzero(possible_transitions)

        # Start from the current orientation, and see which transitions are available;
        # organize them as [left, forward, right], relative to the current orientation
        # If only one transition is possible, the forward branch is aligned with it.
        if num_transitions == 1:
            observation = [0, 1, 0]
        else:
            min_distances = []
            for direction in [(agent.direction + i) % 4 for i in range(-1, 2)]:
                if possible_transitions[direction]:
u214892's avatar
u214892 committed
55
                    new_position = get_new_position(agent_virtual_position, direction)
u214892's avatar
u214892 committed
56
57
                    min_distances.append(
                        self.env.distance_map.get()[handle, new_position[0], new_position[1], direction])
58
59
60
61
                else:
                    min_distances.append(np.inf)

            observation = [0, 0, 0]
62
            observation[np.argmin(min_distances)] = 1
63
64
65
66
67

        return observation


def test_malfunction_process():
Erik Nygren's avatar
Erik Nygren committed
68
    # Set fixed malfunction duration for this test
69
    stochastic_data = {'prop_malfunction': 1.,
70
                       'malfunction_rate': 1000,
71
                       'min_duration': 3,
Erik Nygren's avatar
Erik Nygren committed
72
                       'max_duration': 3}
73
74
75
76
77
78
79
80
81
82
83
84

    rail, rail_map = make_simple_rail2()

    env = RailEnv(width=25,
                  height=30,
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
                  number_of_agents=1,
                  stochastic_data=stochastic_data,  # Malfunction data generator
                  obs_builder_object=SingleAgentNavigationObs()
                  )
    # reset to initialize agents_static
Erik Nygren's avatar
Erik Nygren committed
85
    obs, info = env.reset(False, False, True, random_seed=10)
Erik Nygren's avatar
Erik Nygren committed
86

Erik Nygren's avatar
Erik Nygren committed
87
88
    # Check that a initial duration for malfunction was assigned
    assert env.agents[0].malfunction_data['next_malfunction'] > 0
u214892's avatar
u214892 committed
89
90
    for agent in env.agents:
        agent.status = RailAgentStatus.ACTIVE
Erik Nygren's avatar
Erik Nygren committed
91

92
    agent_halts = 0
Erik Nygren's avatar
Erik Nygren committed
93
94
    total_down_time = 0
    agent_old_position = env.agents[0].position
95
96
97

    # Move target to unreachable position in order to not interfere with test
    env.agents[0].target = (0, 0)
98
99
    for step in range(100):
        actions = {}
u214892's avatar
u214892 committed
100

101
102
103
104
        for i in range(len(obs)):
            actions[i] = np.argmax(obs[i]) + 1

        if step % 5 == 0:
Erik Nygren's avatar
Erik Nygren committed
105
            # Stop the agent and set it to be malfunctioning
106
            env.agents[0].malfunction_data['malfunction'] = -1
Erik Nygren's avatar
Erik Nygren committed
107
            env.agents[0].malfunction_data['next_malfunction'] = 0
108
109
            agent_halts += 1

110
111
        obs, all_rewards, done, _ = env.step(actions)

Erik Nygren's avatar
Erik Nygren committed
112
113
114
115
116
117
        if env.agents[0].malfunction_data['malfunction'] > 0:
            agent_malfunctioning = True
        else:
            agent_malfunctioning = False

        if agent_malfunctioning:
Erik Nygren's avatar
Erik Nygren committed
118
            # Check that agent is not moving while malfunctioning
Erik Nygren's avatar
Erik Nygren committed
119
120
121
122
123
            assert agent_old_position == env.agents[0].position

        agent_old_position = env.agents[0].position
        total_down_time += env.agents[0].malfunction_data['malfunction']

Erik Nygren's avatar
Erik Nygren committed
124
    # Check that the appropriate number of malfunctions is achieved
125
    assert env.agents[0].malfunction_data['nr_malfunctions'] == 20, "Actual {}".format(
u214892's avatar
u214892 committed
126
        env.agents[0].malfunction_data['nr_malfunctions'])
Erik Nygren's avatar
Erik Nygren committed
127

Erik Nygren's avatar
Erik Nygren committed
128
    # Check that 20 stops where performed
129
    assert agent_halts == 20
130

Erik Nygren's avatar
Erik Nygren committed
131
132
    # Check that malfunctioning data was standing around
    assert total_down_time > 0
u214892's avatar
u214892 committed
133
134
135
136
137
138


def test_malfunction_process_statistically():
    """Tests hat malfunctions are produced by stochastic_data!"""
    # Set fixed malfunction duration for this test
    stochastic_data = {'prop_malfunction': 1.,
139
140
141
                       'malfunction_rate': 5,
                       'min_duration': 5,
                       'max_duration': 5}
u214892's avatar
u214892 committed
142

143
144
145
146
147
148
    rail, rail_map = make_simple_rail2()

    env = RailEnv(width=25,
                  height=30,
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
149
                  number_of_agents=10,
150
151
152
153
                  stochastic_data=stochastic_data,  # Malfunction data generator
                  obs_builder_object=SingleAgentNavigationObs()
                  )
    # reset to initialize agents_static
Erik Nygren's avatar
Erik Nygren committed
154
    env.reset(True, True, False, random_seed=10)
155

Erik Nygren's avatar
Erik Nygren committed
156
    env.agents[0].target = (0, 0)
u214892's avatar
u214892 committed
157
    nb_malfunction = 0
158
159
160
161
162
163
164
165
166
167
    agent_malfunction_list = [[0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0],
                              [0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 6, 5],
                              [0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 0, 6, 5, 4],
                              [0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 6, 5, 4],
                              [6, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0],
                              [6, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 0, 6, 5, 4, 3],
                              [0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5],
                              [0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 0, 6, 5, 4, 3, 2, 1, 0],
                              [0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1],
                              [6, 6, 6, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0]]
168

Erik Nygren's avatar
Erik Nygren committed
169
    for step in range(20):
170
        action_dict: Dict[int, RailEnvActions] = {}
171
        for agent_idx in range(env.get_num_agents()):
u214892's avatar
u214892 committed
172
            # We randomly select an action
173
174
175
176
            action_dict[agent_idx] = RailEnvActions(np.random.randint(4))
            # For generating tests only:
            # agent_malfunction_list[agent_idx].append(env.agents[agent_idx].malfunction_data['malfunction'])
            assert env.agents[agent_idx].malfunction_data['malfunction'] == agent_malfunction_list[agent_idx][step]
u214892's avatar
u214892 committed
177
        env.step(action_dict)
178
    # print(agent_malfunction_list)
179

u214892's avatar
u214892 committed
180

181
def test_malfunction_before_entry():
Erik Nygren's avatar
Erik Nygren committed
182
    """Tests that malfunctions are produced by stochastic_data!"""
183
184
    # Set fixed malfunction duration for this test
    stochastic_data = {'prop_malfunction': 1.,
185
                       'malfunction_rate': 1,
186
187
188
189
190
191
192
193
                       'min_duration': 10,
                       'max_duration': 10}

    rail, rail_map = make_simple_rail2()

    env = RailEnv(width=25,
                  height=30,
                  rail_generator=rail_from_grid_transition_map(rail),
Erik Nygren's avatar
Erik Nygren committed
194
195
196
                  schedule_generator=random_schedule_generator(seed=2),  # seed 12
                  number_of_agents=10,
                  random_seed=1,
197
198
199
                  stochastic_data=stochastic_data,  # Malfunction data generator
                  )
    # reset to initialize agents_static
Erik Nygren's avatar
Erik Nygren committed
200
    env.reset(False, False, False, random_seed=10)
201
    env.agents[0].target = (0, 0)
202

203
204
    # Print for test generation
    assert env.agents[0].malfunction_data['malfunction'] == 11
205
206
207
208
209
210
211
212
213
214
    assert env.agents[1].malfunction_data['malfunction'] == 11
    assert env.agents[2].malfunction_data['malfunction'] == 11
    assert env.agents[3].malfunction_data['malfunction'] == 11
    assert env.agents[4].malfunction_data['malfunction'] == 11
    assert env.agents[5].malfunction_data['malfunction'] == 11
    assert env.agents[6].malfunction_data['malfunction'] == 11
    assert env.agents[7].malfunction_data['malfunction'] == 11
    assert env.agents[8].malfunction_data['malfunction'] == 11
    assert env.agents[9].malfunction_data['malfunction'] == 11

215
216
217
218
    for step in range(20):
        action_dict: Dict[int, RailEnvActions] = {}
        for agent in env.agents:
            # We randomly select an action
Erik Nygren's avatar
Erik Nygren committed
219
            action_dict[agent.handle] = RailEnvActions(2)
220
221
222
223
            if step < 10:
                action_dict[agent.handle] = RailEnvActions(0)

        env.step(action_dict)
224
225
226
227
228
229
230
231
232
233
    assert env.agents[1].malfunction_data['malfunction'] == 2
    assert env.agents[2].malfunction_data['malfunction'] == 2
    assert env.agents[3].malfunction_data['malfunction'] == 2
    assert env.agents[4].malfunction_data['malfunction'] == 2
    assert env.agents[5].malfunction_data['malfunction'] == 2
    assert env.agents[6].malfunction_data['malfunction'] == 2
    assert env.agents[7].malfunction_data['malfunction'] == 2
    assert env.agents[8].malfunction_data['malfunction'] == 2
    assert env.agents[9].malfunction_data['malfunction'] == 2

234
    # for a in range(env.get_num_agents()):
Erik Nygren's avatar
Erik Nygren committed
235
236
237
    #    print("assert env.agents[{}].malfunction_data['malfunction'] == {}".format(a,
    #                                                                               env.agents[a].malfunction_data[
    #                                                                                   'malfunction']))
238
239


240
def test_initial_malfunction():
u214892's avatar
u214892 committed
241
    stochastic_data = {'prop_malfunction': 1.,  # Percentage of defective agents
242
                       'malfunction_rate': 100,  # Rate of malfunction occurence
u214892's avatar
u214892 committed
243
244
245
246
                       'min_duration': 2,  # Minimal duration of malfunction
                       'max_duration': 5  # Max duration of malfunction
                       }

247
248
    rail, rail_map = make_simple_rail2()

u214892's avatar
u214892 committed
249
250
    env = RailEnv(width=25,
                  height=30,
251
                  rail_generator=rail_from_grid_transition_map(rail),
252
                  schedule_generator=random_schedule_generator(seed=10),
u214892's avatar
u214892 committed
253
254
                  number_of_agents=1,
                  stochastic_data=stochastic_data,  # Malfunction data generator
255
                  obs_builder_object=SingleAgentNavigationObs()
u214892's avatar
u214892 committed
256
                  )
257
258

    # reset to initialize agents_static
Erik Nygren's avatar
Erik Nygren committed
259
    env.reset(False, False, True, random_seed=10)
260
    print(env.agents[0].malfunction_data)
Erik Nygren's avatar
Erik Nygren committed
261
    env.agents[0].target = (0, 5)
262
    set_penalties_for_replay(env)
263
264
265
    replay_config = ReplayConfig(
        replay=[
            Replay(
266
                position=(3, 2),
267
268
269
270
271
272
273
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                set_malfunction=3,
                malfunction=3,
                reward=env.step_penalty  # full step penalty when malfunctioning
            ),
            Replay(
274
                position=(3, 2),
275
276
277
278
279
280
281
282
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=2,
                reward=env.step_penalty  # full step penalty when malfunctioning
            ),
            # malfunction stops in the next step and we're still at the beginning of the cell
            # --> if we take action MOVE_FORWARD, agent should restart and move to the next cell
            Replay(
283
                position=(3, 2),
284
285
286
287
288
289
290
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=1,
                reward=env.start_penalty + env.step_penalty * 1.0
                # malfunctioning ends: starting and running at speed 1.0
            ),
            Replay(
291
                position=(3, 3),
292
                direction=Grid4TransitionsEnum.EAST,
293
294
295
296
297
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
                reward=env.step_penalty * 1.0  # running at speed 1.0
            ),
            Replay(
298
299
                position=(3, 4),
                direction=Grid4TransitionsEnum.EAST,
300
301
302
303
304
305
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
                reward=env.step_penalty * 1.0  # running at speed 1.0
            )
        ],
        speed=env.agents[0].speed_data['speed'],
u214892's avatar
u214892 committed
306
        target=env.agents[0].target,
307
        initial_position=(3, 2),
u214892's avatar
u214892 committed
308
        initial_direction=Grid4TransitionsEnum.EAST,
309
    )
310
    run_replay_config(env, [replay_config])
311
312
313


def test_initial_malfunction_stop_moving():
314
315
316
317
318
319
    stochastic_data = {'prop_malfunction': 1.,  # Percentage of defective agents
                       'malfunction_rate': 70,  # Rate of malfunction occurence
                       'min_duration': 2,  # Minimal duration of malfunction
                       'max_duration': 5  # Max duration of malfunction
                       }

320
    rail, rail_map = make_simple_rail2()
321
322
323

    env = RailEnv(width=25,
                  height=30,
324
325
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
326
327
                  number_of_agents=1,
                  stochastic_data=stochastic_data,  # Malfunction data generator
328
                  obs_builder_object=SingleAgentNavigationObs()
329
                  )
330
331
332
333
    # reset to initialize agents_static

    print(env.agents[0].initial_position, env.agents[0].direction, env.agents[0].position, env.agents[0].status)

334
    set_penalties_for_replay(env)
335
336
337
    replay_config = ReplayConfig(
        replay=[
            Replay(
u214892's avatar
u214892 committed
338
                position=None,
339
                direction=Grid4TransitionsEnum.EAST,
u214892's avatar
u214892 committed
340
                action=RailEnvActions.MOVE_FORWARD,
341
342
                set_malfunction=3,
                malfunction=3,
u214892's avatar
u214892 committed
343
344
                reward=env.step_penalty,  # full step penalty when stopped
                status=RailAgentStatus.READY_TO_DEPART
345
346
            ),
            Replay(
347
                position=(3, 2),
348
349
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
350
                malfunction=3,
u214892's avatar
u214892 committed
351
352
                reward=env.step_penalty,  # full step penalty when stopped
                status=RailAgentStatus.ACTIVE
353
354
355
356
357
            ),
            # malfunction stops in the next step and we're still at the beginning of the cell
            # --> if we take action STOP_MOVING, agent should restart without moving
            #
            Replay(
358
                position=(3, 2),
359
360
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.STOP_MOVING,
361
                malfunction=2,
u214892's avatar
u214892 committed
362
363
                reward=env.step_penalty,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
364
365
366
            ),
            # we have stopped and do nothing --> should stand still
            Replay(
367
                position=(3, 2),
368
369
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
370
                malfunction=1,
u214892's avatar
u214892 committed
371
372
                reward=env.step_penalty,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
373
374
375
            ),
            # we start to move forward --> should go to next cell now
            Replay(
376
                position=(3, 2),
377
378
379
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
u214892's avatar
u214892 committed
380
381
                reward=env.start_penalty + env.step_penalty * 1.0,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
382
383
            ),
            Replay(
384
                position=(3, 3),
385
                direction=Grid4TransitionsEnum.EAST,
386
387
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
u214892's avatar
u214892 committed
388
389
                reward=env.step_penalty * 1.0,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
390
391
392
            )
        ],
        speed=env.agents[0].speed_data['speed'],
u214892's avatar
u214892 committed
393
        target=env.agents[0].target,
394
        initial_position=(3, 2),
u214892's avatar
u214892 committed
395
        initial_direction=Grid4TransitionsEnum.EAST,
396
    )
397
398

    run_replay_config(env, [replay_config], activate_agents=False)
399
400


401
def test_initial_malfunction_do_nothing():
402
403
404
405
406
407
408
409
410
    random.seed(0)
    np.random.seed(0)

    stochastic_data = {'prop_malfunction': 1.,  # Percentage of defective agents
                       'malfunction_rate': 70,  # Rate of malfunction occurence
                       'min_duration': 2,  # Minimal duration of malfunction
                       'max_duration': 5  # Max duration of malfunction
                       }

411
412
    rail, rail_map = make_simple_rail2()

413
414
    env = RailEnv(width=25,
                  height=30,
415
416
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
417
418
419
                  number_of_agents=1,
                  stochastic_data=stochastic_data,  # Malfunction data generator
                  )
420
421
    # reset to initialize agents_static
    env.reset()
422
    set_penalties_for_replay(env)
423
    replay_config = ReplayConfig(
u214892's avatar
u214892 committed
424
425
426
427
428
429
430
431
432
433
        replay=[
            Replay(
                position=None,
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                set_malfunction=3,
                malfunction=3,
                reward=env.step_penalty,  # full step penalty while malfunctioning
                status=RailAgentStatus.READY_TO_DEPART
            ),
434
            Replay(
435
                position=(3, 2),
436
437
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
438
                malfunction=3,
u214892's avatar
u214892 committed
439
440
                reward=env.step_penalty,  # full step penalty while malfunctioning
                status=RailAgentStatus.ACTIVE
441
442
443
444
445
            ),
            # malfunction stops in the next step and we're still at the beginning of the cell
            # --> if we take action DO_NOTHING, agent should restart without moving
            #
            Replay(
446
                position=(3, 2),
447
448
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
449
                malfunction=2,
u214892's avatar
u214892 committed
450
451
                reward=env.step_penalty,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
452
453
454
            ),
            # we haven't started moving yet --> stay here
            Replay(
455
                position=(3, 2),
456
457
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
458
                malfunction=1,
u214892's avatar
u214892 committed
459
460
                reward=env.step_penalty,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
461
            ),
462

463
            Replay(
464
                position=(3, 2),
465
466
467
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
u214892's avatar
u214892 committed
468
469
                reward=env.start_penalty + env.step_penalty * 1.0,  # start penalty + step penalty for speed 1.0
                status=RailAgentStatus.ACTIVE
470
            ),  # we start to move forward --> should go to next cell now
471
            Replay(
472
                position=(3, 3),
473
                direction=Grid4TransitionsEnum.EAST,
474
475
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
u214892's avatar
u214892 committed
476
477
                reward=env.step_penalty * 1.0,  # step penalty for speed 1.0
                status=RailAgentStatus.ACTIVE
478
479
480
            )
        ],
        speed=env.agents[0].speed_data['speed'],
u214892's avatar
u214892 committed
481
        target=env.agents[0].target,
482
        initial_position=(3, 2),
u214892's avatar
u214892 committed
483
        initial_direction=Grid4TransitionsEnum.EAST,
484
    )
485
    run_replay_config(env, [replay_config], activate_agents=False)
486
487
488
489
490
491
492


def test_initial_nextmalfunction_not_below_zero():
    random.seed(0)
    np.random.seed(0)

    stochastic_data = {'prop_malfunction': 1.,  # Percentage of defective agents
493
494
                       'malfunction_rate': 70,  # Rate of malfunction occurence
                       'min_duration': 2,  # Minimal duration of malfunction
495
496
497
                       'max_duration': 5  # Max duration of malfunction
                       }

498
    rail, rail_map = make_simple_rail2()
499
500
501

    env = RailEnv(width=25,
                  height=30,
502
503
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
504
505
                  number_of_agents=1,
                  stochastic_data=stochastic_data,  # Malfunction data generator
506
                  obs_builder_object=SingleAgentNavigationObs()
507
                  )
508
509
    # reset to initialize agents_static
    env.reset()
510
511
512
513
514
    agent = env.agents[0]
    env.step({})
    # was next_malfunction was -1 befor the bugfix https://gitlab.aicrowd.com/flatland/flatland/issues/186
    assert agent.malfunction_data['next_malfunction'] >= 0, \
        "next_malfunction should be >=0, found {}".format(agent.malfunction_data['next_malfunction'])