test_flatland_malfunction.py 23.8 KB
Newer Older
u214892's avatar
u214892 committed
1
import random
2
from typing import Dict, List
u214892's avatar
u214892 committed
3

4
import numpy as np
5
from test_utils import Replay, ReplayConfig, run_replay_config, set_penalties_for_replay
6

7
from flatland.core.env_observation_builder import ObservationBuilder
u214892's avatar
u214892 committed
8
from flatland.core.grid.grid4 import Grid4TransitionsEnum
9
from flatland.core.grid.grid4_utils import get_new_position
u214892's avatar
u214892 committed
10
from flatland.envs.agent_utils import RailAgentStatus
Erik Nygren's avatar
Erik Nygren committed
11
from flatland.envs.malfunction_generators import malfunction_from_params, MalfunctionParameters
u214892's avatar
u214892 committed
12
from flatland.envs.rail_env import RailEnv, RailEnvActions
13
14
15
from flatland.envs.rail_generators import rail_from_grid_transition_map
from flatland.envs.schedule_generators import random_schedule_generator
from flatland.utils.simple_rail import make_simple_rail2
16
17


18
class SingleAgentNavigationObs(ObservationBuilder):
19
    """
20
    We build a representation vector with 3 binary components, indicating which of the 3 available directions
21
22
23
24
25
26
    for each agent (Left, Forward, Right) lead to the shortest path to its target.
    E.g., if taking the Left branch (if available) is the shortest route to the agent's target, the observation vector
    will be [1, 0, 0].
    """

    def __init__(self):
27
        super().__init__()
28
29

    def reset(self):
30
        pass
31

32
    def get(self, handle: int = 0) -> List[int]:
33
34
        agent = self.env.agents[handle]

u214892's avatar
u214892 committed
35
        if agent.status == RailAgentStatus.READY_TO_DEPART:
u214892's avatar
u214892 committed
36
            agent_virtual_position = agent.initial_position
u214892's avatar
u214892 committed
37
        elif agent.status == RailAgentStatus.ACTIVE:
u214892's avatar
u214892 committed
38
            agent_virtual_position = agent.position
u214892's avatar
u214892 committed
39
        elif agent.status == RailAgentStatus.DONE:
u214892's avatar
u214892 committed
40
            agent_virtual_position = agent.target
u214892's avatar
u214892 committed
41
42
43
        else:
            return None

u214892's avatar
u214892 committed
44
        possible_transitions = self.env.rail.get_transitions(*agent_virtual_position, agent.direction)
45
46
47
48
49
50
51
52
53
54
55
        num_transitions = np.count_nonzero(possible_transitions)

        # Start from the current orientation, and see which transitions are available;
        # organize them as [left, forward, right], relative to the current orientation
        # If only one transition is possible, the forward branch is aligned with it.
        if num_transitions == 1:
            observation = [0, 1, 0]
        else:
            min_distances = []
            for direction in [(agent.direction + i) % 4 for i in range(-1, 2)]:
                if possible_transitions[direction]:
u214892's avatar
u214892 committed
56
                    new_position = get_new_position(agent_virtual_position, direction)
u214892's avatar
u214892 committed
57
58
                    min_distances.append(
                        self.env.distance_map.get()[handle, new_position[0], new_position[1], direction])
59
60
61
62
                else:
                    min_distances.append(np.inf)

            observation = [0, 0, 0]
63
            observation[np.argmin(min_distances)] = 1
64
65
66
67
68

        return observation


def test_malfunction_process():
Erik Nygren's avatar
Erik Nygren committed
69
    # Set fixed malfunction duration for this test
Erik Nygren's avatar
Erik Nygren committed
70
71
72
73
    stochastic_data = MalfunctionParameters(malfunction_rate=1,  # Rate of malfunction occurence
                                            min_duration=3,  # Minimal duration of malfunction
                                            max_duration=3  # Max duration of malfunction
                                            )
74
75
76

    rail, rail_map = make_simple_rail2()

Erik Nygren's avatar
Erik Nygren committed
77
78
79
80
81
82
83
84
    env = RailEnv(width=25,
                  height=30,
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
                  number_of_agents=1,
                  malfunction_generator_and_process_data=malfunction_from_params(stochastic_data),
                  obs_builder_object=SingleAgentNavigationObs()
                  )
Erik Nygren's avatar
Erik Nygren committed
85
    obs, info = env.reset(False, False, True, random_seed=10)
Erik Nygren's avatar
Erik Nygren committed
86

87
    agent_halts = 0
Erik Nygren's avatar
Erik Nygren committed
88
89
    total_down_time = 0
    agent_old_position = env.agents[0].position
90
91
92

    # Move target to unreachable position in order to not interfere with test
    env.agents[0].target = (0, 0)
93
94
    for step in range(100):
        actions = {}
u214892's avatar
u214892 committed
95

96
97
98
        for i in range(len(obs)):
            actions[i] = np.argmax(obs[i]) + 1

99
100
        obs, all_rewards, done, _ = env.step(actions)

Erik Nygren's avatar
Erik Nygren committed
101
102
103
104
105
106
        if env.agents[0].malfunction_data['malfunction'] > 0:
            agent_malfunctioning = True
        else:
            agent_malfunctioning = False

        if agent_malfunctioning:
Erik Nygren's avatar
Erik Nygren committed
107
            # Check that agent is not moving while malfunctioning
Erik Nygren's avatar
Erik Nygren committed
108
109
110
111
112
            assert agent_old_position == env.agents[0].position

        agent_old_position = env.agents[0].position
        total_down_time += env.agents[0].malfunction_data['malfunction']

Erik Nygren's avatar
Erik Nygren committed
113
    # Check that the appropriate number of malfunctions is achieved
Erik Nygren's avatar
Erik Nygren committed
114
    assert env.agents[0].malfunction_data['nr_malfunctions'] == 23, "Actual {}".format(
u214892's avatar
u214892 committed
115
        env.agents[0].malfunction_data['nr_malfunctions'])
Erik Nygren's avatar
Erik Nygren committed
116
117
118

    # Check that malfunctioning data was standing around
    assert total_down_time > 0
u214892's avatar
u214892 committed
119
120
121
122
123


def test_malfunction_process_statistically():
    """Tests hat malfunctions are produced by stochastic_data!"""
    # Set fixed malfunction duration for this test
Erik Nygren's avatar
Erik Nygren committed
124
125
126
127
    stochastic_data = MalfunctionParameters(malfunction_rate=5,  # Rate of malfunction occurence
                                            min_duration=5,  # Minimal duration of malfunction
                                            max_duration=5  # Max duration of malfunction
                                            )
u214892's avatar
u214892 committed
128

129
130
    rail, rail_map = make_simple_rail2()

Erik Nygren's avatar
Erik Nygren committed
131
132
133
134
135
136
137
138
    env = RailEnv(width=25,
                  height=30,
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
                  number_of_agents=10,
                  malfunction_generator_and_process_data=malfunction_from_params(stochastic_data),
                  obs_builder_object=SingleAgentNavigationObs()
                  )
139

Erik Nygren's avatar
Erik Nygren committed
140
    env.reset(True, True, False, random_seed=10)
141

Erik Nygren's avatar
Erik Nygren committed
142
    env.agents[0].target = (0, 0)
143
    # Next line only for test generation
Erik Nygren's avatar
Erik Nygren committed
144
    # agent_malfunction_list = [[] for i in range(10)]
145
146
147
148
149
150
151
152
153
154
    agent_malfunction_list = [[0, 0, 0, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 0, 0, 5, 4],
                              [0, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                              [0, 0, 0, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                              [0, 0, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 0, 5, 4, 3, 2],
                              [0, 0, 0, 0, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 5, 4, 3, 2, 1],
                              [0, 0, 5, 4, 3, 2, 1, 0, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1],
                              [0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0],
                              [5, 4, 3, 2, 1, 0, 0, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 5],
                              [5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 3, 2],
                              [5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 5, 4, 3, 2, 1, 0, 0, 0, 5, 4]]
155

Erik Nygren's avatar
Erik Nygren committed
156
    for step in range(20):
157
        action_dict: Dict[int, RailEnvActions] = {}
158
        for agent_idx in range(env.get_num_agents()):
u214892's avatar
u214892 committed
159
            # We randomly select an action
160
161
            action_dict[agent_idx] = RailEnvActions(np.random.randint(4))
            # For generating tests only:
Erik Nygren's avatar
Erik Nygren committed
162
            # agent_malfunction_list[agent_idx].append(env.agents[agent_idx].malfunction_data['malfunction'])
163
            assert env.agents[agent_idx].malfunction_data['malfunction'] == agent_malfunction_list[agent_idx][step]
u214892's avatar
u214892 committed
164
        env.step(action_dict)
Erik Nygren's avatar
Erik Nygren committed
165
    # print(agent_malfunction_list)
166

u214892's avatar
u214892 committed
167

168
def test_malfunction_before_entry():
Erik Nygren's avatar
Erik Nygren committed
169
    """Tests that malfunctions are working properly for agents before entering the environment!"""
170
    # Set fixed malfunction duration for this test
Erik Nygren's avatar
Erik Nygren committed
171
172
173
174
    stochastic_data = MalfunctionParameters(malfunction_rate=2,  # Rate of malfunction occurence
                                            min_duration=10,  # Minimal duration of malfunction
                                            max_duration=10  # Max duration of malfunction
                                            )
175
176
177

    rail, rail_map = make_simple_rail2()

Erik Nygren's avatar
Erik Nygren committed
178
179
180
181
182
183
184
185
    env = RailEnv(width=25,
                  height=30,
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
                  number_of_agents=10,
                  malfunction_generator_and_process_data=malfunction_from_params(stochastic_data),
                  obs_builder_object=SingleAgentNavigationObs()
                  )
Erik Nygren's avatar
Erik Nygren committed
186
    env.reset(False, False, False, random_seed=10)
187
    env.agents[0].target = (0, 0)
188

189
190
191
    # Test initial malfunction values for all agents
    # we want some agents to be malfuncitoning already and some to be working
    # we want different next_malfunction values for the agents
192
    assert env.agents[0].malfunction_data['malfunction'] == 0
193
194
195
196
197
198
199
    assert env.agents[1].malfunction_data['malfunction'] == 10
    assert env.agents[2].malfunction_data['malfunction'] == 0
    assert env.agents[3].malfunction_data['malfunction'] == 10
    assert env.agents[4].malfunction_data['malfunction'] == 10
    assert env.agents[5].malfunction_data['malfunction'] == 10
    assert env.agents[6].malfunction_data['malfunction'] == 10
    assert env.agents[7].malfunction_data['malfunction'] == 10
Erik Nygren's avatar
Erik Nygren committed
200
201
202
    assert env.agents[8].malfunction_data['malfunction'] == 10
    assert env.agents[9].malfunction_data['malfunction'] == 10

Erik Nygren's avatar
Erik Nygren committed
203
    # for a in range(10):
204
    # print("assert env.agents[{}].malfunction_data['malfunction'] == {}".format(a,env.agents[a].malfunction_data['malfunction']))
205
206


207
208
def test_malfunction_values_and_behavior():
    """
209
    Test the malfunction counts down as desired
210
211
212
213
214
215
216
217
    Returns
    -------

    """
    # Set fixed malfunction duration for this test

    rail, rail_map = make_simple_rail2()
    action_dict: Dict[int, RailEnvActions] = {}
Erik Nygren's avatar
Erik Nygren committed
218
219
220
221
    stochastic_data = MalfunctionParameters(malfunction_rate=0.001,  # Rate of malfunction occurence
                                            min_duration=10,  # Minimal duration of malfunction
                                            max_duration=10  # Max duration of malfunction
                                            )
Erik Nygren's avatar
Erik Nygren committed
222
223
224
225
226
227
228
229
    env = RailEnv(width=25,
                  height=30,
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
                  number_of_agents=1,
                  malfunction_generator_and_process_data=malfunction_from_params(stochastic_data),
                  obs_builder_object=SingleAgentNavigationObs()
                  )
Erik Nygren's avatar
Erik Nygren committed
230

231
232
    env.reset(False, False, activate_agents=True, random_seed=10)

Erik Nygren's avatar
Erik Nygren committed
233
    # Assertions
234
    assert_list = [9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 10, 9, 8, 7, 6, 5]
Erik Nygren's avatar
Erik Nygren committed
235
236
    print("[")
    for time_step in range(15):
237
238
239
        # Move in the env
        env.step(action_dict)
        # Check that next_step decreases as expected
Erik Nygren's avatar
Erik Nygren committed
240
        assert env.agents[0].malfunction_data['malfunction'] == assert_list[time_step]
241

242

243
def test_initial_malfunction():
Erik Nygren's avatar
Erik Nygren committed
244
245
246
247
    stochastic_data = MalfunctionParameters(malfunction_rate=1000,  # Rate of malfunction occurence
                                            min_duration=2,  # Minimal duration of malfunction
                                            max_duration=5  # Max duration of malfunction
                                            )
u214892's avatar
u214892 committed
248

249
250
    rail, rail_map = make_simple_rail2()

u214892's avatar
u214892 committed
251
252
    env = RailEnv(width=25,
                  height=30,
253
                  rail_generator=rail_from_grid_transition_map(rail),
254
                  schedule_generator=random_schedule_generator(seed=10),
u214892's avatar
u214892 committed
255
                  number_of_agents=1,
256
257
                  malfunction_generator_and_process_data=malfunction_from_params(stochastic_data),
                  # Malfunction data generator
258
                  obs_builder_object=SingleAgentNavigationObs()
u214892's avatar
u214892 committed
259
                  )
260
    # reset to initialize agents_static
Erik Nygren's avatar
Erik Nygren committed
261
    env.reset(False, False, True, random_seed=10)
262
    print(env.agents[0].malfunction_data)
Erik Nygren's avatar
Erik Nygren committed
263
    env.agents[0].target = (0, 5)
264
    set_penalties_for_replay(env)
265
266
267
    replay_config = ReplayConfig(
        replay=[
            Replay(
268
                position=(3, 2),
269
270
271
272
273
274
275
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                set_malfunction=3,
                malfunction=3,
                reward=env.step_penalty  # full step penalty when malfunctioning
            ),
            Replay(
276
                position=(3, 2),
277
278
279
280
281
282
283
284
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=2,
                reward=env.step_penalty  # full step penalty when malfunctioning
            ),
            # malfunction stops in the next step and we're still at the beginning of the cell
            # --> if we take action MOVE_FORWARD, agent should restart and move to the next cell
            Replay(
285
                position=(3, 2),
286
287
288
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=1,
289
                reward=env.step_penalty
290

291
            ),  # malfunctioning ends: starting and running at speed 1.0
292
            Replay(
293
                position=(3, 2),
294
                direction=Grid4TransitionsEnum.EAST,
295
296
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
297
                reward=env.start_penalty + env.step_penalty * 1.0  # running at speed 1.0
298
299
            ),
            Replay(
300
                position=(3, 3),
301
                direction=Grid4TransitionsEnum.EAST,
302
303
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
304
                reward=env.step_penalty  # running at speed 1.0
305
306
307
            )
        ],
        speed=env.agents[0].speed_data['speed'],
u214892's avatar
u214892 committed
308
        target=env.agents[0].target,
309
        initial_position=(3, 2),
u214892's avatar
u214892 committed
310
        initial_direction=Grid4TransitionsEnum.EAST,
311
    )
312
    run_replay_config(env, [replay_config])
313
314
315


def test_initial_malfunction_stop_moving():
316
    rail, rail_map = make_simple_rail2()
317

318
319
    env = RailEnv(width=25, height=30, rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(), number_of_agents=1,
Erik Nygren's avatar
Erik Nygren committed
320
                  obs_builder_object=SingleAgentNavigationObs())
321
    env.reset()
322
323
324

    print(env.agents[0].initial_position, env.agents[0].direction, env.agents[0].position, env.agents[0].status)

325
    set_penalties_for_replay(env)
326
327
328
    replay_config = ReplayConfig(
        replay=[
            Replay(
u214892's avatar
u214892 committed
329
                position=None,
330
                direction=Grid4TransitionsEnum.EAST,
u214892's avatar
u214892 committed
331
                action=RailEnvActions.MOVE_FORWARD,
332
333
                set_malfunction=3,
                malfunction=3,
u214892's avatar
u214892 committed
334
335
                reward=env.step_penalty,  # full step penalty when stopped
                status=RailAgentStatus.READY_TO_DEPART
336
337
            ),
            Replay(
338
                position=(3, 2),
339
340
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
341
                malfunction=2,
u214892's avatar
u214892 committed
342
343
                reward=env.step_penalty,  # full step penalty when stopped
                status=RailAgentStatus.ACTIVE
344
345
346
347
348
            ),
            # malfunction stops in the next step and we're still at the beginning of the cell
            # --> if we take action STOP_MOVING, agent should restart without moving
            #
            Replay(
349
                position=(3, 2),
350
351
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.STOP_MOVING,
352
                malfunction=1,
u214892's avatar
u214892 committed
353
354
                reward=env.step_penalty,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
355
356
357
            ),
            # we have stopped and do nothing --> should stand still
            Replay(
358
                position=(3, 2),
359
360
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
361
                malfunction=0,
u214892's avatar
u214892 committed
362
363
                reward=env.step_penalty,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
364
365
366
            ),
            # we start to move forward --> should go to next cell now
            Replay(
367
                position=(3, 2),
368
369
370
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
u214892's avatar
u214892 committed
371
372
                reward=env.start_penalty + env.step_penalty * 1.0,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
373
374
            ),
            Replay(
375
                position=(3, 3),
376
                direction=Grid4TransitionsEnum.EAST,
377
378
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
u214892's avatar
u214892 committed
379
380
                reward=env.step_penalty * 1.0,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
381
382
383
            )
        ],
        speed=env.agents[0].speed_data['speed'],
u214892's avatar
u214892 committed
384
        target=env.agents[0].target,
385
        initial_position=(3, 2),
u214892's avatar
u214892 committed
386
        initial_direction=Grid4TransitionsEnum.EAST,
387
    )
388
389

    run_replay_config(env, [replay_config], activate_agents=False)
390
391


392
def test_initial_malfunction_do_nothing():
Erik Nygren's avatar
Erik Nygren committed
393
394
395
396
    stochastic_data = MalfunctionParameters(malfunction_rate=70,  # Rate of malfunction occurence
                                            min_duration=2,  # Minimal duration of malfunction
                                            max_duration=5  # Max duration of malfunction
                                            )
397

398
399
    rail, rail_map = make_simple_rail2()

400
401
    env = RailEnv(width=25,
                  height=30,
402
403
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
404
                  number_of_agents=1,
405
406
                  malfunction_generator_and_process_data=malfunction_from_params(stochastic_data),
                  # Malfunction data generator
407
                  )
408
    env.reset()
409
    set_penalties_for_replay(env)
410
    replay_config = ReplayConfig(
u214892's avatar
u214892 committed
411
412
413
414
415
416
417
418
419
420
        replay=[
            Replay(
                position=None,
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                set_malfunction=3,
                malfunction=3,
                reward=env.step_penalty,  # full step penalty while malfunctioning
                status=RailAgentStatus.READY_TO_DEPART
            ),
421
            Replay(
422
                position=(3, 2),
423
424
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
425
                malfunction=2,
u214892's avatar
u214892 committed
426
427
                reward=env.step_penalty,  # full step penalty while malfunctioning
                status=RailAgentStatus.ACTIVE
428
429
430
431
432
            ),
            # malfunction stops in the next step and we're still at the beginning of the cell
            # --> if we take action DO_NOTHING, agent should restart without moving
            #
            Replay(
433
                position=(3, 2),
434
435
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
436
                malfunction=1,
u214892's avatar
u214892 committed
437
438
                reward=env.step_penalty,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
439
440
441
            ),
            # we haven't started moving yet --> stay here
            Replay(
442
                position=(3, 2),
443
444
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
445
                malfunction=0,
u214892's avatar
u214892 committed
446
447
                reward=env.step_penalty,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
448
            ),
449

450
            Replay(
451
                position=(3, 2),
452
453
454
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
u214892's avatar
u214892 committed
455
456
                reward=env.start_penalty + env.step_penalty * 1.0,  # start penalty + step penalty for speed 1.0
                status=RailAgentStatus.ACTIVE
457
            ),  # we start to move forward --> should go to next cell now
458
            Replay(
459
                position=(3, 3),
460
                direction=Grid4TransitionsEnum.EAST,
461
462
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
u214892's avatar
u214892 committed
463
464
                reward=env.step_penalty * 1.0,  # step penalty for speed 1.0
                status=RailAgentStatus.ACTIVE
465
466
467
            )
        ],
        speed=env.agents[0].speed_data['speed'],
u214892's avatar
u214892 committed
468
        target=env.agents[0].target,
469
        initial_position=(3, 2),
u214892's avatar
u214892 committed
470
        initial_direction=Grid4TransitionsEnum.EAST,
471
    )
472
    run_replay_config(env, [replay_config], activate_agents=False)
473
474


Erik Nygren's avatar
Erik Nygren committed
475
476
477
478
def tests_random_interference_from_outside():
    """Tests that malfunctions are produced by stochastic_data!"""
    # Set fixed malfunction duration for this test
    rail, rail_map = make_simple_rail2()
479
    env = RailEnv(width=25, height=30, rail_generator=rail_from_grid_transition_map(rail),
Erik Nygren's avatar
Erik Nygren committed
480
                  schedule_generator=random_schedule_generator(seed=2), number_of_agents=1, random_seed=1)
481
    env.reset()
Erik Nygren's avatar
Erik Nygren committed
482
    env.agents[0].speed_data['speed'] = 0.33
Erik Nygren's avatar
Erik Nygren committed
483
    env.reset(False, False, False, random_seed=10)
Erik Nygren's avatar
Erik Nygren committed
484
485
486
487
488
489
490
491
492
493
    env_data = []

    for step in range(200):
        action_dict: Dict[int, RailEnvActions] = {}
        for agent in env.agents:
            # We randomly select an action
            action_dict[agent.handle] = RailEnvActions(2)

        _, reward, _, _ = env.step(action_dict)
        # Append the rewards of the first trial
Erik Nygren's avatar
Erik Nygren committed
494
        env_data.append((reward[0], env.agents[0].position))
Erik Nygren's avatar
Erik Nygren committed
495
496
497
498
499
500
501
502
        assert reward[0] == env_data[step][0]
        assert env.agents[0].position == env_data[step][1]
    # Run the same test as above but with an external random generator running
    # Check that the reward stays the same

    rail, rail_map = make_simple_rail2()
    random.seed(47)
    np.random.seed(1234)
503
    env = RailEnv(width=25, height=30, rail_generator=rail_from_grid_transition_map(rail),
Erik Nygren's avatar
Erik Nygren committed
504
                  schedule_generator=random_schedule_generator(seed=2), number_of_agents=1, random_seed=1)
505
    env.reset()
Erik Nygren's avatar
Erik Nygren committed
506
    env.agents[0].speed_data['speed'] = 0.33
Erik Nygren's avatar
Erik Nygren committed
507
    env.reset(False, False, False, random_seed=10)
Erik Nygren's avatar
Erik Nygren committed
508
509
510
511
512
513
514
515
516

    dummy_list = [1, 2, 6, 7, 8, 9, 4, 5, 4]
    for step in range(200):
        action_dict: Dict[int, RailEnvActions] = {}
        for agent in env.agents:
            # We randomly select an action
            action_dict[agent.handle] = RailEnvActions(2)

            # Do dummy random number generations
Erik Nygren's avatar
Erik Nygren committed
517
518
            random.shuffle(dummy_list)
            np.random.rand()
Erik Nygren's avatar
Erik Nygren committed
519
520
521
522

        _, reward, _, _ = env.step(action_dict)
        assert reward[0] == env_data[step][0]
        assert env.agents[0].position == env_data[step][1]
523
524
525
526
527
528
529
530
531
532
533
534


def test_last_malfunction_step():
    """
    Test to check that agent moves when it is not malfunctioning

    """

    # Set fixed malfunction duration for this test

    rail, rail_map = make_simple_rail2()

535
    env = RailEnv(width=25, height=30, rail_generator=rail_from_grid_transition_map(rail),
Erik Nygren's avatar
Erik Nygren committed
536
                  schedule_generator=random_schedule_generator(seed=2), number_of_agents=1, random_seed=1)
537
    env.reset()
538
    env.agents[0].speed_data['speed'] = 1. / 3.
u229589's avatar
u229589 committed
539
    env.agents[0].target = (0, 0)
540
541
542
543
544
545
546
547
548
549
550
551

    env.reset(False, False, True)
    # Force malfunction to be off at beginning and next malfunction to happen in 2 steps
    env.agents[0].malfunction_data['next_malfunction'] = 2
    env.agents[0].malfunction_data['malfunction'] = 0
    env_data = []
    for step in range(20):
        action_dict: Dict[int, RailEnvActions] = {}
        for agent in env.agents:
            # Go forward all the time
            action_dict[agent.handle] = RailEnvActions(2)

552
553
        if env.agents[0].malfunction_data['malfunction'] < 1:
            agent_can_move = True
554
555
556
        # Store the position before and after the step
        pre_position = env.agents[0].speed_data['position_fraction']
        _, reward, _, _ = env.step(action_dict)
557
        # Check if the agent is still allowed to move in this step
558

559
560
561
        if env.agents[0].malfunction_data['malfunction'] > 0:
            agent_can_move = False
        post_position = env.agents[0].speed_data['position_fraction']
562
563
564
565
566
        # Assert that the agent moved while it was still allowed
        if agent_can_move:
            assert pre_position != post_position
        else:
            assert post_position == pre_position