rail_env.py 13.5 KB
Newer Older
1
2
3
4
5
6
7
"""
Definition of the RailEnv environment and related level-generation functions.

Generator functions are functions that take width, height and num_resets as arguments and return
a GridTransitionMap object.
"""
import numpy as np
8
import pickle
9
10
11

from flatland.core.env import Environment
from flatland.core.env_observation_builder import TreeObsForRailEnv
12
from flatland.envs.generators import random_rail_generator
13
from flatland.envs.env_utils import get_new_position
14
from flatland.envs.agent_utils import EnvAgentStatic, EnvAgent
15

16
17
# from flatland.core.transitions import Grid8Transitions, RailEnvTransitions
# from flatland.core.transition_map import GridTransitionMap
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


class RailEnv(Environment):
    """
    RailEnv environment class.

    RailEnv is an environment inspired by a (simplified version of) a rail
    network, in which agents (trains) have to navigate to their target
    locations in the shortest time possible, while at the same time cooperating
    to avoid bottlenecks.

    The valid actions in the environment are:
        0: do nothing
        1: turn left and move to the next cell
        2: move to the next cell in front of the agent
        3: turn right and move to the next cell

    Moving forward in a dead-end cell makes the agent turn 180 degrees and step
    to the cell it came from.

    The actions of the agents are executed in order of their handle to prevent
    deadlocks and to allow them to learn relative priorities.

    TODO: WRITE ABOUT THE REWARD FUNCTION, and possibly allow for alpha and
    beta to be passed as parameters to __init__().
    """

    def __init__(self,
                 width,
                 height,
spiglerg's avatar
spiglerg committed
48
                 rail_generator=random_rail_generator(),
49
50
51
52
53
54
55
56
                 number_of_agents=1,
                 obs_builder_object=TreeObsForRailEnv(max_depth=2)):
        """
        Environment init.

        Parameters
        -------
        rail_generator : function
57
58
59
60
            The rail_generator function is a function that takes the width,
            height and agents handles of a  rail environment, along with the number of times
            the env has been reset, and returns a GridTransitionMap object and a list of
            starting positions, targets, and initial orientations for agent handle.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
            Implemented functions are:
                random_rail_generator : generate a random rail of given size
                rail_from_GridTransitionMap_generator(rail_map) : generate a rail from
                                        a GridTransitionMap object
                rail_from_manual_specifications_generator(rail_spec) : generate a rail from
                                        a rail specifications array
                TODO: generate_rail_from_saved_list or from list of ndarray bitmaps ---
        width : int
            The width of the rail map. Potentially in the future,
            a range of widths to sample from.
        height : int
            The height of the rail map. Potentially in the future,
            a range of heights to sample from.
        number_of_agents : int
            Number of agents to spawn on the map. Potentially in the future,
            a range of number of agents to sample from.
        obs_builder_object: ObservationBuilder object
            ObservationBuilder-derived object that takes builds observation
            vectors for each agent.
        """

        self.rail_generator = rail_generator
        self.rail = None
        self.width = width
        self.height = height

87
88
        # use get_num_agents() instead
        # self.number_of_agents = number_of_agents
89
90
91
92

        self.obs_builder = obs_builder_object
        self.obs_builder._set_env(self)

93
94
        self.actions = [0] * number_of_agents
        self.rewards = [0] * number_of_agents
95
96
        self.done = False

97
98
        self.dones = dict.fromkeys(list(range(number_of_agents)) + ["__all__"], False)

99
100
101
        self.obs_dict = {}
        self.rewards_dict = {}

102
        # self.agents_handles = list(range(self.number_of_agents))
103
104
105
106

        # self.agents_position = []
        # self.agents_target = []
        # self.agents_direction = []
107
108
        self.agents = [None] * number_of_agents  # live agents
        self.agents_static = [None] * number_of_agents  # static agent information
109
110
        self.num_resets = 0
        self.reset()
hagrid67's avatar
hagrid67 committed
111
        self.num_resets = 0   # yes, set it to zero again!
112

113
114
        self.valid_positions = None

115
    # no more agent_handles
116
    def get_agent_handles(self):
117
118
119
120
121
122
123
        return range(self.get_num_agents())

    def get_num_agents(self, static=True):
        if static:
            return len(self.agents_static)
        else:
            return len(self.agents)
124

hagrid67's avatar
hagrid67 committed
125
126
127
128
129
130
131
    def add_agent_static(self, agent_static):
        """ Add static info for a single agent.
            Returns the index of the new agent.
        """
        self.agents_static.append(agent_static)
        return len(self.agents_static) - 1

132
133
    def restart_agents(self):
        """ Reset the agents to their starting positions defined in agents_static
hagrid67's avatar
hagrid67 committed
134
        """
135
136
137
138
139
140
        self.agents = EnvAgent.list_from_static(self.agents_static)

    def reset(self, regen_rail=True, replace_agents=True):
        """ if regen_rail then regenerate the rails.
            if replace_agents then regenerate the agents static.
            Relies on the rail_generator returning agent_static lists (pos, dir, target)
hagrid67's avatar
hagrid67 committed
141
        """
142
        tRailAgents = self.rail_generator(self.width, self.height, self.get_num_agents(), self.num_resets)
hagrid67's avatar
hagrid67 committed
143

144
        if regen_rail or self.rail is None:
hagrid67's avatar
hagrid67 committed
145
            self.rail = tRailAgents[0]
146

hagrid67's avatar
hagrid67 committed
147
        if replace_agents:
hagrid67's avatar
hagrid67 committed
148
149
150
            self.agents_static = EnvAgentStatic.from_lists(*tRailAgents[1:4])

        # Take the agent static info and put (live) agents at the start positions
151
152
        # self.agents = EnvAgent.list_from_static(self.agents_static[:len(self.agents_handles)])
        self.restart_agents()
hagrid67's avatar
hagrid67 committed
153

154
155
        self.num_resets += 1

156
157
158
        # for handle in self.agents_handles:
        #    self.dones[handle] = False
        self.dones = dict.fromkeys(list(range(self.get_num_agents())) + ["__all__"], False)
159
        # perhaps dones should be part of each agent.
160
        
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        # Reset the state of the observation builder with the new environment
        self.obs_builder.reset()

        # Return the new observation vectors for each agent
        return self._get_observations()

    def step(self, action_dict):
        alpha = 1.0
        beta = 1.0

        invalid_action_penalty = -2
        step_penalty = -1 * alpha
        global_reward = 1 * beta

        # Reset the step rewards
176
        self.rewards_dict = dict()
177
178
179
180
        # for handle in self.agents_handles:
        #    self.rewards_dict[handle] = 0
        for iAgent in range(self.get_num_agents()):
            self.rewards_dict[iAgent] = 0
181
182

        if self.dones["__all__"]:
183
            self.rewards_dict = [r + global_reward for r in self.rewards_dict]
184
185
            return self._get_observations(), self.rewards_dict, self.dones, {}

186
187
188
        # for i in range(len(self.agents_handles)):
        for iAgent in range(self.get_num_agents()):
            # handle = self.agents_handles[i]
189
            transition_isValid = None
190
            agent = self.agents[iAgent]
Erik Nygren's avatar
Erik Nygren committed
191

192
            if iAgent not in action_dict:  # no action has been supplied for this agent
193
194
                continue

195
            if self.dones[iAgent]:  # this agent has already completed...
196
                continue
197
            action = action_dict[iAgent]
198
199
200

            if action < 0 or action > 3:
                print('ERROR: illegal action=', action,
201
                      'for agent with index=', iAgent)
202
203
204
                return

            if action > 0:
205
206
                # pos = agent.position #  self.agents_position[i]
                # direction = agent.direction # self.agents_direction[i]
207

Erik Nygren's avatar
Erik Nygren committed
208
209
210
                # compute number of possible transitions in the current
                # cell used to check for invalid actions

211
                possible_transitions = self.rail.get_transitions((*agent.position, agent.direction))
212
213
                num_transitions = np.count_nonzero(possible_transitions)

214
                movement = agent.direction
hagrid67's avatar
hagrid67 committed
215
                # print(nbits,np.sum(possible_transitions))
216
                if action == 1:
217
                    movement = agent.direction - 1
218
                    if num_transitions <= 1:
219
                        transition_isValid = False
220

221
                elif action == 3:
222
                    movement = agent.direction + 1
223
                    if num_transitions <= 1:
224
                        transition_isValid = False
225

226
                movement %= 4
227
228

                if action == 2:
229
230
231
232
                    if num_transitions == 1:
                        # - dead-end, straight line or curved line;
                        # movement will be the only valid transition
                        # - take only available transition
Erik Nygren's avatar
Erik Nygren committed
233
                        movement = np.argmax(possible_transitions)
234
                        transition_isValid = True
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
                new_position = get_new_position(agent.position, movement)
                # Is it a legal move?
                # 1) transition allows the movement in the cell,
                # 2) the new cell is not empty (case 0),
                # 3) the cell is free, i.e., no agent is currently in that cell
                
                # if (
                #        new_position[1] >= self.width or
                #        new_position[0] >= self.height or
                #        new_position[0] < 0 or new_position[1] < 0):
                #    new_cell_isValid = False

                # if self.rail.get_transitions(new_position) == 0:
                #     new_cell_isValid = False

                new_cell_isValid = (
                        np.array_equal(  # Check the new position is still in the grid
                            new_position,
                            np.clip(new_position, [0, 0], [self.height-1, self.width-1]))
                        and  # check the new position has some transitions (ie is not an empty cell)
                        self.rail.get_transitions(new_position) > 0)
257

Erik Nygren's avatar
Erik Nygren committed
258
                # If transition validity hasn't been checked yet.
hagrid67's avatar
hagrid67 committed
259
                if transition_isValid is None:
260
                    transition_isValid = self.rail.get_transition(
261
                        (*agent.position, agent.direction),
262
                        movement)
263

264
265
266
267
268
269
270
271
272
273
274
                # cell_isFree = True
                # for j in range(self.number_of_agents):
                #    if self.agents_position[j] == new_position:
                #        cell_isFree = False
                #        break
                # Check the new position is not the same as any of the existing agent positions
                # (including itself, for simplicity, since it is moving)
                cell_isFree = not np.any(
                        np.equal(new_position, [agent2.position for agent2 in self.agents]).all(1))

                if all([new_cell_isValid, transition_isValid, cell_isFree]):
275
276
                    # move and change direction to face the movement that was
                    # performed
277
278
279
280
                    # self.agents_position[i] = new_position
                    # self.agents_direction[i] = movement
                    agent.position = new_position
                    agent.direction = movement
281
282
                else:
                    # the action was not valid, add penalty
283
                    self.rewards_dict[iAgent] += invalid_action_penalty
284
285

            # if agent is not in target position, add step penalty
286
287
288
289
            # if self.agents_position[i][0] == self.agents_target[i][0] and \
            #        self.agents_position[i][1] == self.agents_target[i][1]:
            #    self.dones[handle] = True
            if np.equal(agent.position, agent.target).all():
290
                self.dones[iAgent] = True
291
            else:
292
                self.rewards_dict[iAgent] += step_penalty
293
294

        # Check for end of episode + add global reward to all rewards!
295
296
297
298
299
300
301
        # num_agents_in_target_position = 0
        # for i in range(self.number_of_agents):
        #    if self.agents_position[i][0] == self.agents_target[i][0] and \
        #            self.agents_position[i][1] == self.agents_target[i][1]:
        #        num_agents_in_target_position += 1
        # if num_agents_in_target_position == self.number_of_agents:
        if np.all([np.array_equal(agent2.position, agent2.target) for agent2 in self.agents]):
302
            self.dones["__all__"] = True
spiglerg's avatar
spiglerg committed
303
            self.rewards_dict = [r + global_reward for r in self.rewards_dict]
304
305
306

        # Reset the step actions (in case some agent doesn't 'register_action'
        # on the next step)
307
        self.actions = [0] * self.get_num_agents()
308
309
310
311
        return self._get_observations(), self.rewards_dict, self.dones, {}

    def _get_observations(self):
        self.obs_dict = {}
312
313
314
        # for handle in self.agents_handles:
        for iAgent in range(self.get_num_agents()):
            self.obs_dict[iAgent] = self.obs_builder.get(iAgent)
315
316
317
318
319
        return self.obs_dict

    def render(self):
        # TODO:
        pass
320

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    def save(self, sFilename):
        dSave = {
            "grid": self.rail.grid,
            "agents_static": self.agents_static
            }
        with open(sFilename, "wb") as fOut:
            pickle.dump(dSave, fOut)

    def load(self, sFilename):
        with open(sFilename, "rb") as fIn:
            dLoad = pickle.load(fIn)
            self.rail.grid = dLoad["grid"]
            self.height, self.width = self.rail.grid.shape
            self.agents_static = dLoad["agents_static"]
            self.agents = [None] * self.get_num_agents()
            self.dones = dict.fromkeys(list(range(self.get_num_agents())) + ["__all__"], False)