test_flatland_malfunction.py 19.8 KB
Newer Older
u214892's avatar
u214892 committed
1
import random
2
from typing import Dict, List
u214892's avatar
u214892 committed
3

4
import numpy as np
5
from test_utils import Replay, ReplayConfig, run_replay_config, set_penalties_for_replay
6

7
from flatland.core.env_observation_builder import ObservationBuilder
u214892's avatar
u214892 committed
8
from flatland.core.grid.grid4 import Grid4TransitionsEnum
9
from flatland.core.grid.grid4_utils import get_new_position
u214892's avatar
u214892 committed
10
from flatland.envs.agent_utils import RailAgentStatus
u214892's avatar
u214892 committed
11
from flatland.envs.rail_env import RailEnv, RailEnvActions
12
13
14
from flatland.envs.rail_generators import rail_from_grid_transition_map
from flatland.envs.schedule_generators import random_schedule_generator
from flatland.utils.simple_rail import make_simple_rail2
15
16


17
class SingleAgentNavigationObs(ObservationBuilder):
18
    """
19
    We build a representation vector with 3 binary components, indicating which of the 3 available directions
20
21
22
23
24
25
    for each agent (Left, Forward, Right) lead to the shortest path to its target.
    E.g., if taking the Left branch (if available) is the shortest route to the agent's target, the observation vector
    will be [1, 0, 0].
    """

    def __init__(self):
26
        super().__init__()
27
28

    def reset(self):
29
        pass
30

31
    def get(self, handle: int = 0) -> List[int]:
32
33
        agent = self.env.agents[handle]

u214892's avatar
u214892 committed
34
        if agent.status == RailAgentStatus.READY_TO_DEPART:
u214892's avatar
u214892 committed
35
            agent_virtual_position = agent.initial_position
u214892's avatar
u214892 committed
36
        elif agent.status == RailAgentStatus.ACTIVE:
u214892's avatar
u214892 committed
37
            agent_virtual_position = agent.position
u214892's avatar
u214892 committed
38
        elif agent.status == RailAgentStatus.DONE:
u214892's avatar
u214892 committed
39
            agent_virtual_position = agent.target
u214892's avatar
u214892 committed
40
41
42
        else:
            return None

u214892's avatar
u214892 committed
43
        possible_transitions = self.env.rail.get_transitions(*agent_virtual_position, agent.direction)
44
45
46
47
48
49
50
51
52
53
54
        num_transitions = np.count_nonzero(possible_transitions)

        # Start from the current orientation, and see which transitions are available;
        # organize them as [left, forward, right], relative to the current orientation
        # If only one transition is possible, the forward branch is aligned with it.
        if num_transitions == 1:
            observation = [0, 1, 0]
        else:
            min_distances = []
            for direction in [(agent.direction + i) % 4 for i in range(-1, 2)]:
                if possible_transitions[direction]:
u214892's avatar
u214892 committed
55
                    new_position = get_new_position(agent_virtual_position, direction)
u214892's avatar
u214892 committed
56
57
                    min_distances.append(
                        self.env.distance_map.get()[handle, new_position[0], new_position[1], direction])
58
59
60
61
                else:
                    min_distances.append(np.inf)

            observation = [0, 0, 0]
62
            observation[np.argmin(min_distances)] = 1
63
64
65
66
67

        return observation


def test_malfunction_process():
Erik Nygren's avatar
Erik Nygren committed
68
    # Set fixed malfunction duration for this test
69
    stochastic_data = {'prop_malfunction': 1.,
70
                       'malfunction_rate': 1000,
71
                       'min_duration': 3,
Erik Nygren's avatar
Erik Nygren committed
72
                       'max_duration': 3}
73
74
75
76
77
78
79
80
81
82
83
84

    rail, rail_map = make_simple_rail2()

    env = RailEnv(width=25,
                  height=30,
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
                  number_of_agents=1,
                  stochastic_data=stochastic_data,  # Malfunction data generator
                  obs_builder_object=SingleAgentNavigationObs()
                  )
    # reset to initialize agents_static
Erik Nygren's avatar
Erik Nygren committed
85
    obs, info = env.reset(False, False, True, random_seed=10)
Erik Nygren's avatar
Erik Nygren committed
86

Erik Nygren's avatar
Erik Nygren committed
87
88
    # Check that a initial duration for malfunction was assigned
    assert env.agents[0].malfunction_data['next_malfunction'] > 0
u214892's avatar
u214892 committed
89
90
    for agent in env.agents:
        agent.status = RailAgentStatus.ACTIVE
Erik Nygren's avatar
Erik Nygren committed
91

92
    agent_halts = 0
Erik Nygren's avatar
Erik Nygren committed
93
94
    total_down_time = 0
    agent_old_position = env.agents[0].position
95
96
97

    # Move target to unreachable position in order to not interfere with test
    env.agents[0].target = (0, 0)
98
99
    for step in range(100):
        actions = {}
u214892's avatar
u214892 committed
100

101
102
103
104
        for i in range(len(obs)):
            actions[i] = np.argmax(obs[i]) + 1

        if step % 5 == 0:
Erik Nygren's avatar
Erik Nygren committed
105
            # Stop the agent and set it to be malfunctioning
106
            env.agents[0].malfunction_data['malfunction'] = -1
Erik Nygren's avatar
Erik Nygren committed
107
            env.agents[0].malfunction_data['next_malfunction'] = 0
108
109
            agent_halts += 1

110
111
        obs, all_rewards, done, _ = env.step(actions)

Erik Nygren's avatar
Erik Nygren committed
112
113
114
115
116
117
        if env.agents[0].malfunction_data['malfunction'] > 0:
            agent_malfunctioning = True
        else:
            agent_malfunctioning = False

        if agent_malfunctioning:
Erik Nygren's avatar
Erik Nygren committed
118
            # Check that agent is not moving while malfunctioning
Erik Nygren's avatar
Erik Nygren committed
119
120
121
122
123
            assert agent_old_position == env.agents[0].position

        agent_old_position = env.agents[0].position
        total_down_time += env.agents[0].malfunction_data['malfunction']

Erik Nygren's avatar
Erik Nygren committed
124
    # Check that the appropriate number of malfunctions is achieved
Erik Nygren's avatar
Erik Nygren committed
125
    assert env.agents[0].malfunction_data['nr_malfunctions'] == 21, "Actual {}".format(
u214892's avatar
u214892 committed
126
        env.agents[0].malfunction_data['nr_malfunctions'])
Erik Nygren's avatar
Erik Nygren committed
127

Erik Nygren's avatar
Erik Nygren committed
128
    # Check that 20 stops where performed
Erik Nygren's avatar
Erik Nygren committed
129
    assert agent_halts == 20
130

Erik Nygren's avatar
Erik Nygren committed
131
132
    # Check that malfunctioning data was standing around
    assert total_down_time > 0
u214892's avatar
u214892 committed
133
134
135
136
137
138
139
140
141
142


def test_malfunction_process_statistically():
    """Tests hat malfunctions are produced by stochastic_data!"""
    # Set fixed malfunction duration for this test
    stochastic_data = {'prop_malfunction': 1.,
                       'malfunction_rate': 2,
                       'min_duration': 3,
                       'max_duration': 3}

143
144
145
146
147
148
149
150
151
152
153
    rail, rail_map = make_simple_rail2()

    env = RailEnv(width=25,
                  height=30,
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
                  number_of_agents=1,
                  stochastic_data=stochastic_data,  # Malfunction data generator
                  obs_builder_object=SingleAgentNavigationObs()
                  )
    # reset to initialize agents_static
Erik Nygren's avatar
Erik Nygren committed
154
    env.reset(True, True, False, random_seed=10)
155

Erik Nygren's avatar
Erik Nygren committed
156
    env.agents[0].target = (0, 0)
u214892's avatar
u214892 committed
157
    nb_malfunction = 0
Erik Nygren's avatar
Erik Nygren committed
158
    for step in range(20):
159
        action_dict: Dict[int, RailEnvActions] = {}
u214892's avatar
u214892 committed
160
161
        for agent in env.agents:
            # We randomly select an action
162
            action_dict[agent.handle] = RailEnvActions(np.random.randint(4))
u214892's avatar
u214892 committed
163
164
165

        env.step(action_dict)
    # check that generation of malfunctions works as expected
Erik Nygren's avatar
Erik Nygren committed
166
    assert env.agents[0].malfunction_data["nr_malfunctions"] == 5
u214892's avatar
u214892 committed
167
168


169
def test_malfunction_before_entry():
Erik Nygren's avatar
Erik Nygren committed
170
    """Tests that malfunctions are produced by stochastic_data!"""
171
172
173
174
175
176
177
178
179
180
181
    # Set fixed malfunction duration for this test
    stochastic_data = {'prop_malfunction': 1.,
                       'malfunction_rate': 2,
                       'min_duration': 10,
                       'max_duration': 10}

    rail, rail_map = make_simple_rail2()

    env = RailEnv(width=25,
                  height=30,
                  rail_generator=rail_from_grid_transition_map(rail),
Erik Nygren's avatar
Erik Nygren committed
182
183
184
                  schedule_generator=random_schedule_generator(seed=2),  # seed 12
                  number_of_agents=10,
                  random_seed=1,
185
186
187
                  stochastic_data=stochastic_data,  # Malfunction data generator
                  )
    # reset to initialize agents_static
Erik Nygren's avatar
Erik Nygren committed
188
    env.reset(False, False, False, random_seed=10)
189
    env.agents[0].target = (0, 0)
190
191
192
    for a in range(env.get_num_agents()):
        print("assert env.agents[{}].malfunction_data['malfunction'] == {}".format(a, env.agents[a].malfunction_data[
            'malfunction']))
Erik Nygren's avatar
Erik Nygren committed
193

194
195
196
197
    for step in range(20):
        action_dict: Dict[int, RailEnvActions] = {}
        for agent in env.agents:
            # We randomly select an action
Erik Nygren's avatar
Erik Nygren committed
198
            action_dict[agent.handle] = RailEnvActions(2)
199
200
201
202
            if step < 10:
                action_dict[agent.handle] = RailEnvActions(0)

        env.step(action_dict)
Erik Nygren's avatar
Erik Nygren committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    assert env.agents[1].malfunction_data['malfunction'] == 1
    assert env.agents[2].malfunction_data['malfunction'] == 1
    assert env.agents[3].malfunction_data['malfunction'] == 1
    assert env.agents[4].malfunction_data['malfunction'] == 1
    assert env.agents[5].malfunction_data['malfunction'] == 2
    assert env.agents[6].malfunction_data['malfunction'] == 1
    assert env.agents[7].malfunction_data['malfunction'] == 1
    assert env.agents[8].malfunction_data['malfunction'] == 1
    assert env.agents[9].malfunction_data['malfunction'] == 3

    # Print for test generation
    # for a in range(env.get_num_agents()):
    #    print("assert env.agents[{}].malfunction_data['malfunction'] == {}".format(a,
    #                                                                               env.agents[a].malfunction_data[
    #                                                                                   'malfunction']))
218
219


220
def test_initial_malfunction():
221

u214892's avatar
u214892 committed
222
223
224
225
226
227
    stochastic_data = {'prop_malfunction': 1.,  # Percentage of defective agents
                       'malfunction_rate': 70,  # Rate of malfunction occurence
                       'min_duration': 2,  # Minimal duration of malfunction
                       'max_duration': 5  # Max duration of malfunction
                       }

228
229
    rail, rail_map = make_simple_rail2()

u214892's avatar
u214892 committed
230
231
    env = RailEnv(width=25,
                  height=30,
232
233
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
u214892's avatar
u214892 committed
234
235
                  number_of_agents=1,
                  stochastic_data=stochastic_data,  # Malfunction data generator
236
                  obs_builder_object=SingleAgentNavigationObs()
u214892's avatar
u214892 committed
237
                  )
238
239

    # reset to initialize agents_static
Erik Nygren's avatar
Erik Nygren committed
240
241
    env.reset(False, False, True, random_seed=10)
    env.agents[0].target = (0, 5)
242
    set_penalties_for_replay(env)
243
244
245
    replay_config = ReplayConfig(
        replay=[
            Replay(
246
                position=(3, 2),
247
248
249
250
251
252
253
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                set_malfunction=3,
                malfunction=3,
                reward=env.step_penalty  # full step penalty when malfunctioning
            ),
            Replay(
254
                position=(3, 2),
255
256
257
258
259
260
261
262
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=2,
                reward=env.step_penalty  # full step penalty when malfunctioning
            ),
            # malfunction stops in the next step and we're still at the beginning of the cell
            # --> if we take action MOVE_FORWARD, agent should restart and move to the next cell
            Replay(
263
                position=(3, 2),
264
265
266
267
268
269
270
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=1,
                reward=env.start_penalty + env.step_penalty * 1.0
                # malfunctioning ends: starting and running at speed 1.0
            ),
            Replay(
271
                position=(3, 3),
272
                direction=Grid4TransitionsEnum.EAST,
273
274
275
276
277
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
                reward=env.step_penalty * 1.0  # running at speed 1.0
            ),
            Replay(
278
279
                position=(3, 4),
                direction=Grid4TransitionsEnum.EAST,
280
281
282
283
284
285
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
                reward=env.step_penalty * 1.0  # running at speed 1.0
            )
        ],
        speed=env.agents[0].speed_data['speed'],
u214892's avatar
u214892 committed
286
        target=env.agents[0].target,
287
        initial_position=(3, 2),
u214892's avatar
u214892 committed
288
        initial_direction=Grid4TransitionsEnum.EAST,
289
    )
290
    run_replay_config(env, [replay_config])
291
292
293


def test_initial_malfunction_stop_moving():
294
295
296
297
298
299
    stochastic_data = {'prop_malfunction': 1.,  # Percentage of defective agents
                       'malfunction_rate': 70,  # Rate of malfunction occurence
                       'min_duration': 2,  # Minimal duration of malfunction
                       'max_duration': 5  # Max duration of malfunction
                       }

300
    rail, rail_map = make_simple_rail2()
301
302
303

    env = RailEnv(width=25,
                  height=30,
304
305
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
306
307
                  number_of_agents=1,
                  stochastic_data=stochastic_data,  # Malfunction data generator
308
                  obs_builder_object=SingleAgentNavigationObs()
309
                  )
310
311
312
313
    # reset to initialize agents_static

    print(env.agents[0].initial_position, env.agents[0].direction, env.agents[0].position, env.agents[0].status)

314
    set_penalties_for_replay(env)
315
316
317
    replay_config = ReplayConfig(
        replay=[
            Replay(
u214892's avatar
u214892 committed
318
                position=None,
319
                direction=Grid4TransitionsEnum.EAST,
u214892's avatar
u214892 committed
320
                action=RailEnvActions.MOVE_FORWARD,
321
322
                set_malfunction=3,
                malfunction=3,
u214892's avatar
u214892 committed
323
324
                reward=env.step_penalty,  # full step penalty when stopped
                status=RailAgentStatus.READY_TO_DEPART
325
326
            ),
            Replay(
327
                position=(3, 2),
328
329
330
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
                malfunction=2,
u214892's avatar
u214892 committed
331
332
                reward=env.step_penalty,  # full step penalty when stopped
                status=RailAgentStatus.ACTIVE
333
334
335
336
337
            ),
            # malfunction stops in the next step and we're still at the beginning of the cell
            # --> if we take action STOP_MOVING, agent should restart without moving
            #
            Replay(
338
                position=(3, 2),
339
340
341
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.STOP_MOVING,
                malfunction=1,
u214892's avatar
u214892 committed
342
343
                reward=env.step_penalty,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
344
345
346
            ),
            # we have stopped and do nothing --> should stand still
            Replay(
347
                position=(3, 2),
348
349
350
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
                malfunction=0,
u214892's avatar
u214892 committed
351
352
                reward=env.step_penalty,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
353
354
355
            ),
            # we start to move forward --> should go to next cell now
            Replay(
356
                position=(3, 2),
357
358
359
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
u214892's avatar
u214892 committed
360
361
                reward=env.start_penalty + env.step_penalty * 1.0,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
362
363
            ),
            Replay(
364
                position=(3, 3),
365
                direction=Grid4TransitionsEnum.EAST,
366
367
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
u214892's avatar
u214892 committed
368
369
                reward=env.step_penalty * 1.0,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
370
371
372
            )
        ],
        speed=env.agents[0].speed_data['speed'],
u214892's avatar
u214892 committed
373
        target=env.agents[0].target,
374
        initial_position=(3, 2),
u214892's avatar
u214892 committed
375
        initial_direction=Grid4TransitionsEnum.EAST,
376
    )
377
378

    run_replay_config(env, [replay_config], activate_agents=False)
379
380


381
def test_initial_malfunction_do_nothing():
382
383
384
385
386
387
388
389
390
    random.seed(0)
    np.random.seed(0)

    stochastic_data = {'prop_malfunction': 1.,  # Percentage of defective agents
                       'malfunction_rate': 70,  # Rate of malfunction occurence
                       'min_duration': 2,  # Minimal duration of malfunction
                       'max_duration': 5  # Max duration of malfunction
                       }

391
392
    rail, rail_map = make_simple_rail2()

393
394
395

    env = RailEnv(width=25,
                  height=30,
396
397
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
398
399
400
                  number_of_agents=1,
                  stochastic_data=stochastic_data,  # Malfunction data generator
                  )
401
402
    # reset to initialize agents_static
    env.reset()
403
    set_penalties_for_replay(env)
404
    replay_config = ReplayConfig(
u214892's avatar
u214892 committed
405
406
407
408
409
410
411
412
413
414
        replay=[
            Replay(
                position=None,
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                set_malfunction=3,
                malfunction=3,
                reward=env.step_penalty,  # full step penalty while malfunctioning
                status=RailAgentStatus.READY_TO_DEPART
            ),
415
            Replay(
416
                position=(3, 2),
417
418
419
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
                malfunction=2,
u214892's avatar
u214892 committed
420
421
                reward=env.step_penalty,  # full step penalty while malfunctioning
                status=RailAgentStatus.ACTIVE
422
423
424
425
426
            ),
            # malfunction stops in the next step and we're still at the beginning of the cell
            # --> if we take action DO_NOTHING, agent should restart without moving
            #
            Replay(
427
                position=(3, 2),
428
429
430
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
                malfunction=1,
u214892's avatar
u214892 committed
431
432
                reward=env.step_penalty,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
433
434
435
            ),
            # we haven't started moving yet --> stay here
            Replay(
436
                position=(3, 2),
437
438
439
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.DO_NOTHING,
                malfunction=0,
u214892's avatar
u214892 committed
440
441
                reward=env.step_penalty,  # full step penalty while stopped
                status=RailAgentStatus.ACTIVE
442
            ),
443

444
            Replay(
445
                position=(3, 2),
446
447
448
                direction=Grid4TransitionsEnum.EAST,
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
u214892's avatar
u214892 committed
449
450
                reward=env.start_penalty + env.step_penalty * 1.0,  # start penalty + step penalty for speed 1.0
                status=RailAgentStatus.ACTIVE
451
            ),  # we start to move forward --> should go to next cell now
452
            Replay(
453
                position=(3, 3),
454
                direction=Grid4TransitionsEnum.EAST,
455
456
                action=RailEnvActions.MOVE_FORWARD,
                malfunction=0,
u214892's avatar
u214892 committed
457
458
                reward=env.step_penalty * 1.0,  # step penalty for speed 1.0
                status=RailAgentStatus.ACTIVE
459
460
461
            )
        ],
        speed=env.agents[0].speed_data['speed'],
u214892's avatar
u214892 committed
462
        target=env.agents[0].target,
463
        initial_position=(3, 2),
u214892's avatar
u214892 committed
464
        initial_direction=Grid4TransitionsEnum.EAST,
465
    )
466
    run_replay_config(env, [replay_config], activate_agents=False)
467
468
469
470
471
472
473


def test_initial_nextmalfunction_not_below_zero():
    random.seed(0)
    np.random.seed(0)

    stochastic_data = {'prop_malfunction': 1.,  # Percentage of defective agents
474
475
                       'malfunction_rate': 70,  # Rate of malfunction occurence
                       'min_duration': 2,  # Minimal duration of malfunction
476
477
478
                       'max_duration': 5  # Max duration of malfunction
                       }

479
    rail, rail_map = make_simple_rail2()
480
481
482

    env = RailEnv(width=25,
                  height=30,
483
484
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
485
486
                  number_of_agents=1,
                  stochastic_data=stochastic_data,  # Malfunction data generator
487
                  obs_builder_object=SingleAgentNavigationObs()
488
                  )
489
490
    # reset to initialize agents_static
    env.reset()
491
492
493
494
495
    agent = env.agents[0]
    env.step({})
    # was next_malfunction was -1 befor the bugfix https://gitlab.aicrowd.com/flatland/flatland/issues/186
    assert agent.malfunction_data['next_malfunction'] >= 0, \
        "next_malfunction should be >=0, found {}".format(agent.malfunction_data['next_malfunction'])