rail_env.py 28.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
"""
Definition of the RailEnv environment and related level-generation functions.

Generator functions are functions that take width, height and num_resets as arguments and return
a GridTransitionMap object.
"""
import random
import numpy as np

from flatland.core.env import Environment
from flatland.core.env_observation_builder import TreeObsForRailEnv

spiglerg's avatar
spiglerg committed
13
from flatland.core.transitions import Grid8Transitions, RailEnvTransitions
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
from flatland.core.transition_map import GridTransitionMap


def rail_from_manual_specifications_generator(rail_spec):
    """
    Utility to convert a rail given by manual specification as a map of tuples
    (cell_type, rotation), to a transition map with the correct 16-bit
    transitions specifications.

    Parameters
    -------
    rail_spec : list of list of tuples
        List (rows) of lists (columns) of tuples, each specifying a cell for
        the RailEnv environment as (cell_type, rotation), with rotation being
        clock-wise and in [0, 90, 180, 270].

    Returns
    -------
    function
        Generator function that always returns a GridTransitionMap object with
        the matrix of correct 16-bit bitmaps for each cell.
    """
    def generator(width, height, num_resets=0):
        t_utils = RailEnvTransitions()

        height = len(rail_spec)
        width = len(rail_spec[0])
        rail = GridTransitionMap(width=width, height=height, transitions=t_utils)

        for r in range(height):
            for c in range(width):
                cell = rail_spec[r][c]
                if cell[0] < 0 or cell[0] >= len(t_utils.transitions):
                    print("ERROR - invalid cell type=", cell[0])
                    return []
                rail.set_transitions((r, c), t_utils.rotate_transition(
                              t_utils.transitions[cell[0]], cell[1]))

        return rail

    return generator


def rail_from_GridTransitionMap_generator(rail_map):
    """
    Utility to convert a rail given by a GridTransitionMap map with the correct
    16-bit transitions specifications.

    Parameters
    -------
    rail_map : GridTransitionMap object
        GridTransitionMap object to return when the generator is called.

    Returns
    -------
    function
        Generator function that always returns the given `rail_map' object.
    """
    def generator(width, height, num_resets=0):
        return rail_map

    return generator


78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
def rail_from_list_of_saved_GridTransitionMap_generator(list_of_filenames):
    """
    Utility to sequentially and cyclically return GridTransitionMap-s from a list of files, on each environment reset.

    Parameters
    -------
    list_of_filenames : list
        List of filenames with the saved grids to load.

    Returns
    -------
    function
        Generator function that always returns the given `rail_map' object.
    """
    def generator(width, height, num_resets=0):
        t_utils = RailEnvTransitions()
        rail_map = GridTransitionMap(width=width, height=height, transitions=t_utils)
        rail_map.load_transition_map(list_of_filenames[num_resets % len(list_of_filenames)], override_gridsize=False)

        if rail_map.grid.dtype == np.uint64:
            rail_map.transitions = Grid8Transitions()

        return rail_map

    return generator


105
106
107
108
109
110
111
112
113
"""
def generate_rail_from_list_of_manual_specifications(list_of_specifications)
    def generator(width, height, num_resets=0):
        return generate_rail_from_manual_specifications(list_of_specifications)

    return generator
"""


114
def random_rail_generator(cell_type_relative_proportion=[1.0]*8):
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    """
    Dummy random level generator:
    - fill in cells at random in [width-2, height-2]
    - keep filling cells in among the unfilled ones, such that all transitions
      are legit;  if no cell can be filled in without violating some
      transitions, pick one among those that can satisfy most transitions
      (1,2,3 or 4), and delete (+mark to be re-filled) the cells that were
      incompatible.
    - keep trying for a total number of insertions
      (e.g., (W-2)*(H-2)*MAX_REPETITIONS ); if no solution is found, empty the
      board and try again from scratch.
    - finally pad the border of the map with dead-ends to avoid border issues.

    Dead-ends are not allowed inside the grid, only at the border; however, if
    no cell type can be inserted in a given cell (because of the neighboring
    transitions), deadends are allowed if they solve the problem. This was
    found to turn most un-genereatable levels into valid ones.

    Parameters
    -------
    width : int
        The width (number of cells) of the grid to generate.
    height : int
        The height (number of cells) of the grid to generate.

    Returns
    -------
    numpy.ndarray of type numpy.uint16
        The matrix with the correct 16-bit bitmaps for each cell.
    """

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def generator(width, height, num_resets=0):
        t_utils = RailEnvTransitions()

        transition_probability = cell_type_relative_proportion

        transitions_templates_ = []
        transition_probabilities = []
        for i in range(len(t_utils.transitions)-1):  # don't include dead-ends
            all_transitions = 0
            for dir_ in range(4):
                trans = t_utils.get_transitions(t_utils.transitions[i], dir_)
                all_transitions |= (trans[0] << 3) | \
                                   (trans[1] << 2) | \
                                   (trans[2] << 1) | \
                                   (trans[3])

            template = [int(x) for x in bin(all_transitions)[2:]]
            template = [0]*(4-len(template)) + template

            # add all rotations
            for rot in [0, 90, 180, 270]:
                transitions_templates_.append((template,
                                              t_utils.rotate_transition(
                                               t_utils.transitions[i],
                                               rot)))
                transition_probabilities.append(transition_probability[i])
                template = [template[-1]]+template[:-1]

        def get_matching_templates(template):
            ret = []
            for i in range(len(transitions_templates_)):
                is_match = True
                for j in range(4):
                    if template[j] >= 0 and \
                       template[j] != transitions_templates_[i][0][j]:
                        is_match = False
                        break
                if is_match:
                    ret.append((transitions_templates_[i][1], transition_probabilities[i]))
            return ret

        MAX_INSERTIONS = (width-2) * (height-2) * 10
        MAX_ATTEMPTS_FROM_SCRATCH = 10

        attempt_number = 0
        while attempt_number < MAX_ATTEMPTS_FROM_SCRATCH:
            cells_to_fill = []
            rail = []
            for r in range(height):
                rail.append([None]*width)
                if r > 0 and r < height-1:
                    cells_to_fill = cells_to_fill \
                                    + [(r, c) for c in range(1, width-1)]

            num_insertions = 0
            while num_insertions < MAX_INSERTIONS and len(cells_to_fill) > 0:
                cell = random.sample(cells_to_fill, 1)[0]
                cells_to_fill.remove(cell)
                row = cell[0]
                col = cell[1]

                # look at its neighbors and see what are the possible transitions
                # that can be chosen from, if any.
                valid_template = [-1, -1, -1, -1]

                for el in [(0, 2, (-1, 0)),
                           (1, 3, (0, 1)),
                           (2, 0, (1, 0)),
                           (3, 1, (0, -1))]:  # N, E, S, W
                    neigh_trans = rail[row+el[2][0]][col+el[2][1]]
                    if neigh_trans is not None:
                        # select transition coming from facing direction el[1] and
                        # moving to direction el[1]
                        max_bit = 0
                        for k in range(4):
                            max_bit |= \
                             t_utils.get_transition(neigh_trans, k, el[1])

                        if max_bit:
                            valid_template[el[0]] = 1
                        else:
                            valid_template[el[0]] = 0

                possible_cell_transitions = get_matching_templates(valid_template)

                if len(possible_cell_transitions) == 0:  # NO VALID TRANSITIONS
                    # no cell can be filled in without violating some transitions
                    # can a dead-end solve the problem?
                    if valid_template.count(1) == 1:
                        for k in range(4):
                            if valid_template[k] == 1:
237
                                rot = 0
238
239
240
241
242
243
244
245
246
247
                                if k == 0:
                                    rot = 180
                                elif k == 1:
                                    rot = 270
                                elif k == 2:
                                    rot = 0
                                elif k == 3:
                                    rot = 90

                                rail[row][col] = t_utils.rotate_transition(
248
                                                  int('0010000000000000', 2), rot)
249
                                num_insertions += 1
250

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
                                break

                    else:
                        # can I get valid transitions by removing a single
                        # neighboring cell?
                        bestk = -1
                        besttrans = []
                        for k in range(4):
                            tmp_template = valid_template[:]
                            tmp_template[k] = -1
                            possible_cell_transitions = get_matching_templates(
                                                         tmp_template)
                            if len(possible_cell_transitions) > len(besttrans):
                                besttrans = possible_cell_transitions
                                bestk = k

                        if bestk >= 0:
                            # Replace the corresponding cell with None, append it
                            # to cells to fill, fill in a transition in the current
                            # cell.
                            replace_row = row - 1
                            replace_col = col
                            if bestk == 1:
                                replace_row = row
                                replace_col = col + 1
                            elif bestk == 2:
                                replace_row = row + 1
                                replace_col = col
                            elif bestk == 3:
                                replace_row = row
                                replace_col = col - 1

                            cells_to_fill.append((replace_row, replace_col))
                            rail[replace_row][replace_col] = None

                            possible_transitions, possible_probabilities = zip(*besttrans)
287
                            possible_probabilities = [p/sum(possible_probabilities) for p in possible_probabilities]
288
289
290

                            rail[row][col] = np.random.choice(possible_transitions,
                                                              p=possible_probabilities)
291
292
                            num_insertions += 1

293
294
295
296
297
                        else:
                            print('WARNING: still nothing!')
                            rail[row][col] = int('0000000000000000', 2)
                            num_insertions += 1
                            pass
298
299

                else:
300
                    possible_transitions, possible_probabilities = zip(*possible_cell_transitions)
301
                    possible_probabilities = [p/sum(possible_probabilities) for p in possible_probabilities]
302

303
304
305
                    rail[row][col] = np.random.choice(possible_transitions,
                                                      p=possible_probabilities)
                    num_insertions += 1
306

307
308
309
310
311
            if num_insertions == MAX_INSERTIONS:
                # Failed to generate a valid level; try again for a number of times
                attempt_number += 1
            else:
                break
312

313
314
        if attempt_number == MAX_ATTEMPTS_FROM_SCRATCH:
            print('ERROR: failed to generate level')
315

316
317
318
319
320
321
322
323
324
325
326
327
328
        # Finally pad the border of the map with dead-ends to avoid border issues;
        # at most 1 transition in the neigh cell
        for r in range(height):
            # Check for transitions coming from [r][1] to WEST
            max_bit = 0
            neigh_trans = rail[r][1]
            if neigh_trans is not None:
                for k in range(4):
                    neigh_trans_from_direction = (neigh_trans >> ((3-k) * 4)) \
                                                 & (2**4-1)
                    max_bit = max_bit | (neigh_trans_from_direction & 1)
            if max_bit:
                rail[r][0] = t_utils.rotate_transition(
329
                               int('0010000000000000', 2), 270)
330
331
332
333
334
335
336
337
338
339
340
341
            else:
                rail[r][0] = int('0000000000000000', 2)

            # Check for transitions coming from [r][-2] to EAST
            max_bit = 0
            neigh_trans = rail[r][-2]
            if neigh_trans is not None:
                for k in range(4):
                    neigh_trans_from_direction = (neigh_trans >> ((3-k) * 4)) \
                                                 & (2**4-1)
                    max_bit = max_bit | (neigh_trans_from_direction & (1 << 2))
            if max_bit:
342
                rail[r][-1] = t_utils.rotate_transition(int('0010000000000000', 2),
343
                                                        90)
344
            else:
345
346
                rail[r][-1] = int('0000000000000000', 2)

347
        for c in range(width):
348
349
350
351
352
353
354
355
356
            # Check for transitions coming from [1][c] to NORTH
            max_bit = 0
            neigh_trans = rail[1][c]
            if neigh_trans is not None:
                for k in range(4):
                    neigh_trans_from_direction = (neigh_trans >> ((3-k) * 4)) \
                                                  & (2**4-1)
                    max_bit = max_bit | (neigh_trans_from_direction & (1 << 3))
            if max_bit:
357
                rail[0][c] = int('0010000000000000', 2)
358
359
360
361
362
363
364
365
366
367
368
369
370
            else:
                rail[0][c] = int('0000000000000000', 2)

            # Check for transitions coming from [-2][c] to SOUTH
            max_bit = 0
            neigh_trans = rail[-2][c]
            if neigh_trans is not None:
                for k in range(4):
                    neigh_trans_from_direction = (neigh_trans >> ((3-k) * 4)) \
                                                 & (2**4-1)
                    max_bit = max_bit | (neigh_trans_from_direction & (1 << 1))
            if max_bit:
                rail[-1][c] = t_utils.rotate_transition(
371
                                int('0010000000000000', 2), 180)
372
373
            else:
                rail[-1][c] = int('0000000000000000', 2)
374

375
376
377
378
379
380
381
        # For display only, wrong levels
        for r in range(height):
            for c in range(width):
                if rail[r][c] is None:
                    rail[r][c] = int('0000000000000000', 2)

        tmp_rail = np.asarray(rail, dtype=np.uint16)
382

383
384
385
386
387
        return_rail = GridTransitionMap(width=width, height=height, transitions=t_utils)
        return_rail.grid = tmp_rail
        return return_rail

    return generator
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417


class RailEnv(Environment):
    """
    RailEnv environment class.

    RailEnv is an environment inspired by a (simplified version of) a rail
    network, in which agents (trains) have to navigate to their target
    locations in the shortest time possible, while at the same time cooperating
    to avoid bottlenecks.

    The valid actions in the environment are:
        0: do nothing
        1: turn left and move to the next cell
        2: move to the next cell in front of the agent
        3: turn right and move to the next cell

    Moving forward in a dead-end cell makes the agent turn 180 degrees and step
    to the cell it came from.

    The actions of the agents are executed in order of their handle to prevent
    deadlocks and to allow them to learn relative priorities.

    TODO: WRITE ABOUT THE REWARD FUNCTION, and possibly allow for alpha and
    beta to be passed as parameters to __init__().
    """

    def __init__(self,
                 width,
                 height,
spiglerg's avatar
spiglerg committed
418
                 rail_generator=random_rail_generator(),
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
                 number_of_agents=1,
                 obs_builder_object=TreeObsForRailEnv(max_depth=2)):
        """
        Environment init.

        Parameters
        -------
        rail_generator : function
            The rail_generator function is a function that takes the width and
            height of a  rail map along with the number of times the env has
            been reset, and returns a GridTransitionMap object.
            Implemented functions are:
                random_rail_generator : generate a random rail of given size
                rail_from_GridTransitionMap_generator(rail_map) : generate a rail from
                                        a GridTransitionMap object
                rail_from_manual_specifications_generator(rail_spec) : generate a rail from
                                        a rail specifications array
                TODO: generate_rail_from_saved_list or from list of ndarray bitmaps ---
        width : int
            The width of the rail map. Potentially in the future,
            a range of widths to sample from.
        height : int
            The height of the rail map. Potentially in the future,
            a range of heights to sample from.
        number_of_agents : int
            Number of agents to spawn on the map. Potentially in the future,
            a range of number of agents to sample from.
        obs_builder_object: ObservationBuilder object
            ObservationBuilder-derived object that takes builds observation
            vectors for each agent.
        """

        self.rail_generator = rail_generator
        self.rail = None
        self.width = width
        self.height = height

        self.number_of_agents = number_of_agents

        self.obs_builder = obs_builder_object
        self.obs_builder._set_env(self)

        self.actions = [0]*self.number_of_agents
        self.rewards = [0]*self.number_of_agents
        self.done = False

        self.dones = {"__all__": False}
        self.obs_dict = {}
        self.rewards_dict = {}

        self.agents_handles = list(range(self.number_of_agents))

        # self.agents_position = []
        # self.agents_target = []
        # self.agents_direction = []
        self.num_resets = 0
        self.reset()
        self.num_resets = 0

    def get_agent_handles(self):
        return self.agents_handles

    def reset(self):
        self.rail = self.rail_generator(self.width, self.height, self.num_resets)
        self.num_resets += 1

        self.dones = {"__all__": False}
        for handle in self.agents_handles:
            self.dones[handle] = False

        re_generate = True
        while re_generate:
            valid_positions = []
            for r in range(self.height):
                for c in range(self.width):
                    if self.rail.get_transitions((r, c)) > 0:
                        valid_positions.append((r, c))

            self.agents_position = random.sample(valid_positions,
                                                 self.number_of_agents)
            self.agents_target = random.sample(valid_positions,
                                               self.number_of_agents)

            # agents_direction must be a direction for which a solution is
            # guaranteed.
            self.agents_direction = [0]*self.number_of_agents
            re_generate = False
            for i in range(self.number_of_agents):
                valid_movements = []
                for direction in range(4):
                    position = self.agents_position[i]
                    moves = self.rail.get_transitions(
                            (position[0], position[1], direction))
                    for move_index in range(4):
                        if moves[move_index]:
                            valid_movements.append((direction, move_index))

                valid_starting_directions = []
                for m in valid_movements:
                    new_position = self._new_position(self.agents_position[i],
                                                      m[1])
                    if m[0] not in valid_starting_directions and \
                       self._path_exists(new_position, m[0],
                                         self.agents_target[i]):
                        valid_starting_directions.append(m[0])

                if len(valid_starting_directions) == 0:
                    re_generate = True
                else:
                    self.agents_direction[i] = random.sample(
                                               valid_starting_directions, 1)[0]

        # Reset the state of the observation builder with the new environment
        self.obs_builder.reset()

        # Return the new observation vectors for each agent
        return self._get_observations()

    def step(self, action_dict):
        alpha = 1.0
        beta = 1.0

        invalid_action_penalty = -2
        step_penalty = -1 * alpha
        global_reward = 1 * beta

        # Reset the step rewards
        self.rewards_dict = {}
        for handle in self.agents_handles:
            self.rewards_dict[handle] = 0

        if self.dones["__all__"]:
            return self._get_observations(), self.rewards_dict, self.dones, {}

        for i in range(len(self.agents_handles)):
            handle = self.agents_handles[i]

            if handle not in action_dict:
                continue

            action = action_dict[handle]

            if action < 0 or action > 3:
                print('ERROR: illegal action=', action,
                      'for agent with handle=', handle)
                return

            if action > 0:
                pos = self.agents_position[i]
                direction = self.agents_direction[i]

                movement = direction
                if action == 1:
                    movement = direction - 1
                elif action == 3:
                    movement = direction + 1

                if movement < 0:
                    movement += 4
                if movement >= 4:
                    movement -= 4

                is_deadend = False
                if action == 2:
                    # compute number of possible transitions in the current
                    # cell
                    nbits = 0
                    tmp = self.rail.get_transitions((pos[0], pos[1]))
                    while tmp > 0:
                        nbits += (tmp & 1)
                        tmp = tmp >> 1
                    if nbits == 1:
                        # dead-end;  assuming the rail network is consistent,
                        # this should match the direction the agent has come
                        # from. But it's better to check in any case.
                        reverse_direction = 0
                        if direction == 0:
                            reverse_direction = 2
                        elif direction == 1:
                            reverse_direction = 3
                        elif direction == 2:
                            reverse_direction = 0
                        elif direction == 3:
                            reverse_direction = 1

                        valid_transition = self.rail.get_transition(
                                            (pos[0], pos[1], direction),
                                            reverse_direction)
                        if valid_transition:
                            direction = reverse_direction
                            movement = reverse_direction
                            is_deadend = True

                new_position = self._new_position(pos, movement)

                # Is it a legal move?  1) transition allows the movement in the
                # cell,  2) the new cell is not empty (case 0),  3) the cell is
                # free, i.e., no agent is currently in that cell
                if new_position[1] >= self.width or\
                   new_position[0] >= self.height or\
                   new_position[0] < 0 or new_position[1] < 0:
                    new_cell_isValid = False

                elif self.rail.get_transitions((new_position[0], new_position[1])) > 0:
                    new_cell_isValid = True
                else:
                    new_cell_isValid = False

                transition_isValid = self.rail.get_transition(
                     (pos[0], pos[1], direction),
                     movement) or is_deadend

                cell_isFree = True
                for j in range(self.number_of_agents):
                    if self.agents_position[j] == new_position:
                        cell_isFree = False
                        break

                if new_cell_isValid and transition_isValid and cell_isFree:
                    # move and change direction to face the movement that was
                    # performed
                    self.agents_position[i] = new_position
                    self.agents_direction[i] = movement
                else:
                    # the action was not valid, add penalty
                    self.rewards_dict[handle] += invalid_action_penalty

            # if agent is not in target position, add step penalty
            if self.agents_position[i][0] == self.agents_target[i][0] and \
               self.agents_position[i][1] == self.agents_target[i][1]:
                self.dones[handle] = True
            else:
                self.rewards_dict[handle] += step_penalty

        # Check for end of episode + add global reward to all rewards!
        num_agents_in_target_position = 0
        for i in range(self.number_of_agents):
            if self.agents_position[i][0] == self.agents_target[i][0] and \
               self.agents_position[i][1] == self.agents_target[i][1]:
                num_agents_in_target_position += 1

        if num_agents_in_target_position == self.number_of_agents:
            self.dones["__all__"] = True
            self.rewards_dict = [r+global_reward for r in self.rewards_dict]

        # Reset the step actions (in case some agent doesn't 'register_action'
        # on the next step)
        self.actions = [0]*self.number_of_agents

        return self._get_observations(), self.rewards_dict, self.dones, {}

    def _new_position(self, position, movement):
        if movement == 0:    # NORTH
            return (position[0]-1, position[1])
        elif movement == 1:  # EAST
            return (position[0], position[1] + 1)
        elif movement == 2:  # SOUTH
            return (position[0]+1, position[1])
        elif movement == 3:  # WEST
            return (position[0], position[1] - 1)

    def _path_exists(self, start, direction, end):
        # BFS - Check if a path exists between the 2 nodes

        visited = set()
        stack = [(start, direction)]
        while stack:
            node = stack.pop()
            if node[0][0] == end[0] and node[0][1] == end[1]:
                return 1
            if node not in visited:
                visited.add(node)
                moves = self.rail.get_transitions((node[0][0], node[0][1], node[1]))
                for move_index in range(4):
                    if moves[move_index]:
                        stack.append((self._new_position(node[0], move_index),
                                      move_index))

                # If cell is a dead-end, append previous node with reversed
                # orientation!
                nbits = 0
                tmp = self.rail.get_transitions((node[0][0], node[0][1]))
                while tmp > 0:
                    nbits += (tmp & 1)
                    tmp = tmp >> 1
                if nbits == 1:
                    stack.append((node[0], (node[1] + 2) % 4))

        return 0

    def _get_observations(self):
        self.obs_dict = {}
        for handle in self.agents_handles:
            self.obs_dict[handle] = self.obs_builder.get(handle)
        return self.obs_dict

    def render(self):
        # TODO:
        pass