import numpy as np from ray.rllib.models.preprocessors import Preprocessor def max_lt(seq, val): """ Return greatest item in seq for which item < val applies. None is returned if seq was empty or all items in seq were >= val. """ max = 0 idx = len(seq) - 1 while idx >= 0: if seq[idx] < val and seq[idx] >= 0 and seq[idx] > max: max = seq[idx] idx -= 1 return max def min_lt(seq, val): """ Return smallest item in seq for which item > val applies. None is returned if seq was empty or all items in seq were >= val. """ min = np.inf idx = len(seq) - 1 while idx >= 0: if seq[idx] >= val and seq[idx] < min: min = seq[idx] idx -= 1 return min def norm_obs_clip(obs, clip_min=-1, clip_max=1): """ This function returns the difference between min and max value of an observation :param obs: Observation that should be normalized :param clip_min: min value where observation will be clipped :param clip_max: max value where observation will be clipped :return: returnes normalized and clipped observatoin """ max_obs = max(1, max_lt(obs, 1000)) min_obs = min(max_obs, min_lt(obs, 0)) if max_obs == min_obs: return np.clip(np.array(obs) / max_obs, clip_min, clip_max) norm = np.abs(max_obs - min_obs) if norm == 0: norm = 1. return np.clip((np.array(obs) - min_obs) / norm, clip_min, clip_max) class TreeObsPreprocessor(Preprocessor): def _init_shape(self, obs_space, options): print(options) self.step_memory = options["custom_options"]["step_memory"] return sum([space.shape[0] for space in obs_space]), def transform(self, observation): if self.step_memory == 2: data = norm_obs_clip(observation[0][0]) distance = norm_obs_clip(observation[0][1]) agent_data = np.clip(observation[0][2], -1, 1) data2 = norm_obs_clip(observation[1][0]) distance2 = norm_obs_clip(observation[1][1]) agent_data2 = np.clip(observation[1][2], -1, 1) else: data = norm_obs_clip(observation[0]) distance = norm_obs_clip(observation[1]) agent_data = np.clip(observation[2], -1, 1) return np.concatenate((np.concatenate((np.concatenate((data, distance)), agent_data)), np.concatenate((np.concatenate((data2, distance2)), agent_data2))))