diff --git a/torch_training/multi_agent_inference.py b/torch_training/multi_agent_inference.py index e131f46a76c7da7c37981d58ba43736437615f53..cb8fa32397f668288e7dd689ea68676ed1cc9592 100644 --- a/torch_training/multi_agent_inference.py +++ b/torch_training/multi_agent_inference.py @@ -3,7 +3,7 @@ from collections import deque import numpy as np import torch -from flatland.envs.malfunction_generators import malfunction_from_params +from flatland.envs.malfunction_generators import malfunction_from_params, MalfunctionParameters from flatland.envs.observations import TreeObsForRailEnv from flatland.envs.predictions import ShortestPathPredictorForRailEnv from flatland.envs.rail_env import RailEnv @@ -37,10 +37,11 @@ n_agents = 10 observation_builder = TreeObsForRailEnv(max_depth=2) # Use a the malfunction generator to break agents from time to time -stochastic_data = {'malfunction_rate': 8000, # Rate of malfunction occurence of single agent - 'min_duration': 15, # Minimal duration of malfunction - 'max_duration': 50 # Max duration of malfunction - } +stochastic_data = MalfunctionParameters(malfunction_rate=10000, # Rate of malfunction occurence + min_duration=15, # Minimal duration of malfunction + max_duration=50 # Max duration of malfunction + ) + # Custom observation builder