diff --git a/torch_training/Nets/avoid_checkpoint60000.pth b/torch_training/Nets/avoid_checkpoint60000.pth index b0ec2e414c475f228019bde5b98dfa75ace0e0eb..1a35def33802ce6ac4b4f5d35c0c11c7095b2927 100644 Binary files a/torch_training/Nets/avoid_checkpoint60000.pth and b/torch_training/Nets/avoid_checkpoint60000.pth differ diff --git a/torch_training/multi_agent_inference.py b/torch_training/multi_agent_inference.py index 4e12353eaeaf353f70af79987ca9cc2e87a302ae..3d6d27c09ad8920720fa2312a555296a57d39924 100644 --- a/torch_training/multi_agent_inference.py +++ b/torch_training/multi_agent_inference.py @@ -17,7 +17,7 @@ from utils.observation_utils import norm_obs_clip, split_tree random.seed(3) np.random.seed(2) -file_name = "./railway/navigate_and_avoid.pkl" +file_name = "./railway/complex_scene.pkl" env = RailEnv(width=10, height=20, rail_generator=rail_from_file(file_name), @@ -27,9 +27,9 @@ y_dim = env.height """ -x_dim = np.random.randint(8, 20) -y_dim = np.random.randint(8, 20) -n_agents = np.random.randint(3, 8) +x_dim = 20 #np.random.randint(8, 20) +y_dim = 20 #np.random.randint(8, 20) +n_agents = 10 #np.random.randint(3, 8) n_goals = n_agents + np.random.randint(0, 3) min_dist = int(0.75 * min(x_dim, y_dim)) @@ -53,7 +53,7 @@ for i in range(tree_depth + 1): state_size = num_features_per_node * nr_nodes action_size = 5 -n_trials = 5 +n_trials = 1 observation_radius = 10 max_steps = int(3 * (env.height + env.width)) eps = 1. @@ -70,10 +70,10 @@ action_prob = [0] * action_size agent_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents() agent = Agent(state_size, action_size, "FC", 0) -with path(torch_training.Nets, "avoid_checkpoint53400.pth") as file_in: +with path(torch_training.Nets, "avoid_checkpoint60000.pth") as file_in: agent.qnetwork_local.load_state_dict(torch.load(file_in)) -record_images = False +record_images = True frame_step = 0 for trials in range(1, n_trials + 1): @@ -93,7 +93,7 @@ for trials in range(1, n_trials + 1): # Run episode for step in range(max_steps): - env_renderer.render_env(show=True, show_observations=False, show_predictions=True) + env_renderer.render_env(show=True, show_observations=False, show_predictions=False) if record_images: env_renderer.gl.save_image("./Images/Avoiding/flatland_frame_{:04d}.bmp".format(frame_step))