diff --git a/sequential_agent/run_test.py b/sequential_agent/run_test.py index 72b645fcdf909ff6a1a6742e6b41fe65e5903e4c..6e9f7c218eba6d7abef1294a568f64a08842d25f 100644 --- a/sequential_agent/run_test.py +++ b/sequential_agent/run_test.py @@ -18,9 +18,9 @@ y_dim = env.height """ -x_dim = 10 # np.random.randint(8, 20) -y_dim = 10 # np.random.randint(8, 20) -n_agents = 5 # np.random.randint(3, 8) +x_dim = 20 # np.random.randint(8, 20) +y_dim = 20 # np.random.randint(8, 20) +n_agents = 10 # np.random.randint(3, 8) n_goals = n_agents + np.random.randint(0, 3) min_dist = int(0.75 * min(x_dim, y_dim)) @@ -63,10 +63,10 @@ for trials in range(1, n_trials + 1): for a in range(env.get_num_agents()): if done[a]: acting_agent += 1 - if acting_agent == a: - action = agent.act(obs[acting_agent], eps=0) + if a == acting_agent: + action = agent.act(obs[a], eps=0) else: - action = 0 + action = 4 action_dict.update({a: action}) # Environment step diff --git a/torch_training/multi_agent_training.py b/torch_training/multi_agent_training.py index b5fe86a04e981c7bdae96976bfdfca85d533d789..476066a902242ff1c7a024ed6a9bacee8d370d83 100644 --- a/torch_training/multi_agent_training.py +++ b/torch_training/multi_agent_training.py @@ -93,7 +93,7 @@ def main(argv): # Here you can pre-load an agent if True: - with path(torch_training.Nets, "avoid_checkpoint53700.pth") as file_in: + with path(torch_training.Nets, "avoid_checkpoint2400.pth") as file_in: agent.qnetwork_local.load_state_dict(torch.load(file_in)) # Do training over n_episodes