import argparse import os import os.path as osp import pickle import shutil import tempfile import mmcv import torch import torch.distributed as dist from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import get_dist_info, init_dist, load_checkpoint from mmdet.core import coco_eval, results2json, wrap_fp16_model from mmdet.datasets import build_dataloader, build_dataset from mmdet.models import build_detector import glob import json test_images_path = os.getenv("AICROWD_TEST_IMAGES_PATH", False) predictions_output_path = os.getenv("AICROWD_PREDICTIONS_OUTPUT_PATH", False) annotations = {'categories': [], 'info': {}, 'images': []} for item in glob.glob(test_images_path+'/*.jpg'): image_dict = dict() img = mmcv.imread(item) height,width,__ = img.shape id = int(os.path.basename(item).split('.')[0]) image_dict['id'] = id image_dict['file_name'] = os.path.basename(item) image_dict['width'] = width image_dict['height'] = height annotations['images'].append(image_dict) annotations['categories'] = [ { "id": 2578, "name": "water", "name_readable": "Water", "supercategory": "food" }, { "id": 2939, "name": "pizza-margherita-baked", "name_readable": "Pizza, Margherita, baked", "supercategory": "food" }, { "id": 1085, "name": "broccoli", "name_readable": "Broccoli", "supercategory": "food" }, { "id": 1040, "name": "salad-leaf-salad-green", "name_readable": "Salad, leaf / salad, green", "supercategory": "food" }, { "id": 1070, "name": "zucchini", "name_readable": "Zucchini", "supercategory": "food" }, { "id": 2022, "name": "egg", "name_readable": "Egg", "supercategory": "food" }, { "id": 2053, "name": "butter", "name_readable": "Butter", "supercategory": "food" }, { "id": 1566, "name": "bread-white", "name_readable": "Bread, white", "supercategory": "food" }, { "id": 1151, "name": "apple", "name_readable": "Apple", "supercategory": "food" }, { "id": 2131, "name": "dark-chocolate", "name_readable": "Dark chocolate", "supercategory": "food" }, { "id": 2521, "name": "white-coffee-with-caffeine", "name_readable": "White coffee, with caffeine", "supercategory": "food" }, { "id": 1068, "name": "sweet-pepper", "name_readable": "Sweet pepper", "supercategory": "food" }, { "id": 1026, "name": "mixed-salad-chopped-without-sauce", "name_readable": "Mixed salad (chopped without sauce)", "supercategory": "food" }, { "id": 2738, "name": "tomato-sauce", "name_readable": "Tomato sauce", "supercategory": "food" }, { "id": 1565, "name": "bread-wholemeal", "name_readable": "Bread, wholemeal", "supercategory": "food" }, { "id": 2512, "name": "coffee-with-caffeine", "name_readable": "Coffee, with caffeine", "supercategory": "food" }, { "id": 1061, "name": "cucumber", "name_readable": "Cucumber", "supercategory": "food" }, { "id": 1311, "name": "cheese", "name_readable": "Cheese", "supercategory": "food" }, { "id": 1505, "name": "pasta-spaghetti", "name_readable": "Pasta, spaghetti", "supercategory": "food" }, { "id": 1468, "name": "rice", "name_readable": "Rice", "supercategory": "food" }, { "id": 1967, "name": "salmon", "name_readable": "Salmon", "supercategory": "food" }, { "id": 1078, "name": "carrot", "name_readable": "Carrot", "supercategory": "food" }, { "id": 1116, "name": "onion", "name_readable": "Onion", "supercategory": "food" }, { "id": 1022, "name": "mixed-vegetables", "name_readable": "Mixed vegetables", "supercategory": "food" }, { "id": 2504, "name": "espresso-with-caffeine", "name_readable": "Espresso, with caffeine", "supercategory": "food" }, { "id": 1154, "name": "banana", "name_readable": "Banana", "supercategory": "food" }, { "id": 1163, "name": "strawberries", "name_readable": "Strawberries", "supercategory": "food" }, { "id": 2750, "name": "mayonnaise", "name_readable": "Mayonnaise", "supercategory": "food" }, { "id": 1210, "name": "almonds", "name_readable": "Almonds", "supercategory": "food" }, { "id": 2620, "name": "wine-white", "name_readable": "Wine, white", "supercategory": "food" }, { "id": 1310, "name": "hard-cheese", "name_readable": "Hard cheese", "supercategory": "food" }, { "id": 1893, "name": "ham-raw", "name_readable": "Ham, raw", "supercategory": "food" }, { "id": 1069, "name": "tomato", "name_readable": "Tomato", "supercategory": "food" }, { "id": 1058, "name": "french-beans", "name_readable": "French beans", "supercategory": "food" }, { "id": 1180, "name": "mandarine", "name_readable": "Mandarine", "supercategory": "food" }, { "id": 2618, "name": "wine-red", "name_readable": "Wine, red", "supercategory": "food" }, { "id": 1010, "name": "potatoes-steamed", "name_readable": "Potatoes steamed", "supercategory": "food" }, { "id": 1588, "name": "croissant", "name_readable": "Croissant", "supercategory": "food" }, { "id": 1879, "name": "salami", "name_readable": "Salami", "supercategory": "food" }, { "id": 3080, "name": "boisson-au-glucose-50g", "name_readable": "Boisson au glucose 50g", "supercategory": "food" }, { "id": 2388, "name": "biscuits", "name_readable": "Biscuits", "supercategory": "food" }, { "id": 1108, "name": "corn", "name_readable": "Corn", "supercategory": "food" }, { "id": 1032, "name": "leaf-spinach", "name_readable": "Leaf spinach", "supercategory": "food" }, { "id": 2099, "name": "jam", "name_readable": "Jam", "supercategory": "food" }, { "id": 2530, "name": "tea-green", "name_readable": "Tea, green", "supercategory": "food" }, { "id": 1013, "name": "chips-french-fries", "name_readable": "Chips, french fries", "supercategory": "food" }, { "id": 1323, "name": "parmesan", "name_readable": "Parmesan", "supercategory": "food" }, { "id": 2634, "name": "beer", "name_readable": "Beer", "supercategory": "food" }, { "id": 1056, "name": "avocado", "name_readable": "Avocado", "supercategory": "food" }, { "id": 1520, "name": "bread-french-white-flour", "name_readable": "Bread, French (white flour)", "supercategory": "food" }, { "id": 1788, "name": "chicken", "name_readable": "Chicken", "supercategory": "food" }, { "id": 1352, "name": "soft-cheese", "name_readable": "Soft cheese", "supercategory": "food" }, { "id": 2498, "name": "tea", "name_readable": "Tea", "supercategory": "food" }, { "id": 2711, "name": "sauce-savoury", "name_readable": "Sauce (savoury)", "supercategory": "food" }, { "id": 2103, "name": "honey", "name_readable": "Honey", "supercategory": "food" }, { "id": 1554, "name": "bread-whole-wheat", "name_readable": "Bread, whole wheat", "supercategory": "food" }, { "id": 1556, "name": "bread-sourdough", "name_readable": "Bread, sourdough", "supercategory": "food" }, { "id": 1307, "name": "gruyere", "name_readable": "Gruyère", "supercategory": "food" }, { "id": 1060, "name": "pickle", "name_readable": "Pickle", "supercategory": "food" }, { "id": 1220, "name": "mixed-nuts", "name_readable": "Mixed nuts", "supercategory": "food" }, { "id": 2580, "name": "water-mineral", "name_readable": "Water, mineral", "supercategory": "food" } ] json.dump(annotations, open('test.json', 'w')) def single_gpu_test(model, data_loader, show=False): model.eval() results = [] dataset = data_loader.dataset prog_bar = mmcv.ProgressBar(len(dataset)) for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=not show, **data) results.append(result) if show: model.module.show_result(data, result) batch_size = data['img'][0].size(0) for _ in range(batch_size): prog_bar.update() return results def multi_gpu_test(model, data_loader, tmpdir=None): model.eval() results = [] dataset = data_loader.dataset rank, world_size = get_dist_info() if rank == 0: prog_bar = mmcv.ProgressBar(len(dataset)) for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) results.append(result) if rank == 0: batch_size = data['img'][0].size(0) for _ in range(batch_size * world_size): prog_bar.update() # collect results from all ranks results = collect_results(results, len(dataset), tmpdir) return results def collect_results(result_part, size, tmpdir=None): rank, world_size = get_dist_info() # create a tmp dir if it is not specified if tmpdir is None: MAX_LEN = 512 # 32 is whitespace dir_tensor = torch.full((MAX_LEN, ), 32, dtype=torch.uint8, device='cuda') if rank == 0: tmpdir = tempfile.mkdtemp() tmpdir = torch.tensor( bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda') dir_tensor[:len(tmpdir)] = tmpdir dist.broadcast(dir_tensor, 0) tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip() else: mmcv.mkdir_or_exist(tmpdir) # dump the part result to the dir mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank))) dist.barrier() # collect all parts if rank != 0: return None else: # load results of all parts from tmp dir part_list = [] for i in range(world_size): part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i)) part_list.append(mmcv.load(part_file)) # sort the results ordered_results = [] for res in zip(*part_list): ordered_results.extend(list(res)) # the dataloader may pad some samples ordered_results = ordered_results[:size] # remove tmp dir shutil.rmtree(tmpdir) return ordered_results def parse_args(): parser = argparse.ArgumentParser(description='MMDet test detector') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--out', help='output result file') parser.add_argument( '--json_out', help='output result file name without extension', type=str) parser.add_argument( '--eval', type=str, nargs='+', choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'], help='eval types') parser.add_argument('--show', action='store_true', help='show results') parser.add_argument('--tmpdir', help='tmp dir for writing some results') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() assert args.out or args.show or args.json_out, \ ('Please specify at least one operation (save or show the results) ' 'with the argument "--out" or "--show" or "--json_out"') if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): raise ValueError('The output file must be a pkl file.') if args.json_out is not None and args.json_out.endswith('.json'): args.json_out = args.json_out[:-5] cfg = mmcv.Config.fromfile(args.config) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.model.pretrained = None cfg.data.test.test_mode = True cfg.data.test.ann_file = 'test.json' cfg.data.test.img_prefix = test_images_path # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, imgs_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False) # build the model and load checkpoint model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') # old versions did not save class info in checkpoints, this walkaround is # for backward compatibility model.CLASSES = [category['name'] for category in annotations['categories']] if not distributed: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader, args.show) else: model = MMDistributedDataParallel(model.cuda()) outputs = multi_gpu_test(model, data_loader, args.tmpdir) rank, _ = get_dist_info() if args.out and rank == 0: print('\nwriting results to {}'.format(args.out)) mmcv.dump(outputs, args.out) eval_types = args.eval if eval_types: print('Starting evaluate {}'.format(' and '.join(eval_types))) if eval_types == ['proposal_fast']: result_file = args.out coco_eval(result_file, eval_types, dataset.coco) else: if not isinstance(outputs[0], dict): result_files = results2json(dataset, outputs, args.out) coco_eval(result_files, eval_types, dataset.coco) else: for name in outputs[0]: print('\nEvaluating {}'.format(name)) outputs_ = [out[name] for out in outputs] result_file = args.out + '.{}'.format(name) result_files = results2json(dataset, outputs_, result_file) coco_eval(result_files, eval_types, dataset.coco) print(args.json_out, rank) if outputs and args.json_out and rank == 0: print(outputs) if not isinstance(outputs[0], dict): response = results2json(dataset, outputs, args.json_out) else: for name in outputs[0]: outputs_ = [out[name] for out in outputs] result_file = args.json_out + '.{}'.format(name) response = results2json(dataset, outputs_, result_file) print(response, response['segm'], args.json_out) shutil.move(response['segm'], predictions_output_path) if __name__ == '__main__': main()