diff --git a/examples/flatland_2_0_example.py b/examples/flatland_2_0_example.py index 1caa0aa943f564ba6a10f87f3efceb8233248fd7..5078af158ed9cb183978f83b505b5b1b291cb4f6 100644 --- a/examples/flatland_2_0_example.py +++ b/examples/flatland_2_0_example.py @@ -18,7 +18,6 @@ stochastic_data = {'prop_malfunction': 0.5, # Percentage of defective agents 'max_duration': 10 # Max duration of malfunction } - TreeObservation = TreeObsForRailEnv(max_depth=2, predictor=ShortestPathPredictorForRailEnv()) env = RailEnv(width=10, height=10, @@ -106,7 +105,10 @@ for trials in range(1, n_trials + 1): # reward and whether their are done next_obs, all_rewards, done, _ = env.step(action_dict) env_renderer.render_env(show=True, show_observations=False, show_predictions=False) - env_renderer.gl.save_image("./Images/flatland_2_0_frame_{:04d}.bmp".format(frame_step)) + try: + env_renderer.gl.save_image("./../rendering/flatland_2_0_frame_{:04d}.bmp".format(frame_step)) + except: + print("Path not found: ./../rendering/") frame_step += 1 # Update replay buffer and train agent for a in range(env.get_num_agents()):