diff --git a/examples/flatland_2_0_example.py b/examples/flatland_2_0_example.py index 5078af158ed9cb183978f83b505b5b1b291cb4f6..b3c24da79a3f16480405dfe5b7bf94902d513a0e 100644 --- a/examples/flatland_2_0_example.py +++ b/examples/flatland_2_0_example.py @@ -19,15 +19,16 @@ stochastic_data = {'prop_malfunction': 0.5, # Percentage of defective agents } TreeObservation = TreeObsForRailEnv(max_depth=2, predictor=ShortestPathPredictorForRailEnv()) -env = RailEnv(width=10, - height=10, - rail_generator=sparse_rail_generator(num_cities=3, # Number of cities in map (where train stations are) - num_intersections=1, # Number of interesections (no start / target) - num_trainstations=8, # Number of possible start/targets on map +env = RailEnv(width=20, + height=20, + rail_generator=sparse_rail_generator(num_cities=5, # Number of cities in map (where train stations are) + num_intersections=4, # Number of interesections (no start / target) + num_trainstations=15, # Number of possible start/targets on map min_node_dist=3, # Minimal distance of nodes - node_radius=2, # Proximity of stations to city center - num_neighb=2, # Number of connections to other cities/intersections + node_radius=3, # Proximity of stations to city center + num_neighb=3, # Number of connections to other cities/intersections seed=15, # Random seed + realistic_mode=True ), number_of_agents=5, stochastic_data=stochastic_data, # Malfunction generator data @@ -86,7 +87,7 @@ for trials in range(1, n_trials + 1): obs = env.reset() for idx in range(env.get_num_agents()): tmp_agent = env.agents[idx] - speed = (idx % 4) + 1 + speed = (idx % 5) + 1 tmp_agent.speed_data["speed"] = 1 / speed env_renderer.reset() # Here you can also further enhance the provided observation by means of normalization diff --git a/tests/test_flatland_env_sparse_rail_generator.py b/tests/test_flatland_env_sparse_rail_generator.py index 17d502347b15c857f9d0ac0daef7918e35814ab2..1dbb788cf20b2a82e7fd55d3d94408f5ad29ac30 100644 --- a/tests/test_flatland_env_sparse_rail_generator.py +++ b/tests/test_flatland_env_sparse_rail_generator.py @@ -42,10 +42,11 @@ def test_sparse_rail_generator(): node_radius=3, # Proximity of stations to city center num_neighb=3, # Number of connections to other cities seed=5, # Random seed - realistic_mode=True # Ordered distribution of nodes + realistic_mode=False # Ordered distribution of nodes ), number_of_agents=10, obs_builder_object=GlobalObsForRailEnv()) # reset to initialize agents_static env_renderer = RenderTool(env, gl="PILSVG", ) env_renderer.render_env(show=True, show_observations=True, show_predictions=False) + env_renderer.gl.save_image("./sparse_generator_false.png")