custom_torch_ppg.py 18.4 KB
Newer Older
Dipam Chakraborty's avatar
Dipam Chakraborty committed
1
2
3
4
5
6
7
8
9
10
11
from ray.rllib.policy.torch_policy import TorchPolicy
import numpy as np
from ray.rllib.utils.torch_ops import convert_to_non_torch_type, convert_to_torch_tensor
from ray.rllib.utils import try_import_torch
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.annotations import override
from collections import deque
from .utils import *
import time

torch, nn = try_import_torch()
12
import torch.distributions as td
Dipam Chakraborty's avatar
Dipam Chakraborty committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

class CustomTorchPolicy(TorchPolicy):
    """Example of a random policy
    If you are using tensorflow/pytorch to build custom policies,
    you might find `build_tf_policy` and `build_torch_policy` to
    be useful.
    Adopted from examples from https://docs.ray.io/en/master/rllib-concepts.html
    """

    def __init__(self, observation_space, action_space, config):
        self.config = config

        self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        dist_class, logit_dim = ModelCatalog.get_action_dist(
            action_space, self.config["model"], framework="torch")
        self.model = ModelCatalog.get_model_v2(
                        obs_space=observation_space,
                        action_space=action_space,
                        num_outputs=logit_dim,
                        model_config=self.config["model"],
                        framework="torch",
                        device=self.device,
                     )

        TorchPolicy.__init__(
            self,
            observation_space=observation_space,
            action_space=action_space,
            config=config,
            model=self.model,
            loss=None,
            action_distribution_class=dist_class,
        )
        self.framework = "torch"
Dipam Chakraborty's avatar
Dipam Chakraborty committed
47
48
49
50
51
52
53
54
        aux_params = set(self.model.aux_vf.parameters())
        value_params = set(self.model.value_fc.parameters())
        network_params = set(self.model.parameters())
        aux_optim_params = list(network_params - value_params)
        ppo_optim_params = list(network_params - aux_params - value_params)
        self.optimizer = torch.optim.Adam(ppo_optim_params, lr=5e-4)
        self.aux_optimizer = torch.optim.Adam(aux_optim_params, lr=5e-4)
        self.value_optimizer = torch.optim.Adam(value_params, lr=1e-3)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
55
56
57
58
59
60
61
62
63
64
65
        self.max_reward = self.config['env_config']['return_max']
        self.rewnorm = RewardNormalizer(cliprew=self.max_reward) ## TODO: Might need to go to custom state
        self.reward_deque = deque(maxlen=100)
        self.best_reward = -np.inf
        self.best_weights = None
        self.time_elapsed = 0
        self.batch_end_time = time.time()
        self.timesteps_total = 0
        self.best_rew_tsteps = 0
        
        nw = self.config['num_workers'] if self.config['num_workers'] > 0 else 1
Dipam Chakraborty's avatar
Dipam Chakraborty committed
66
67
68
69
        nenvs = nw * self.config['num_envs_per_worker']
        nsteps = self.config['rollout_fragment_length']
        n_pi = self.config['n_pi']
        self.nbatch = nenvs * nsteps
Dipam Chakraborty's avatar
Dipam Chakraborty committed
70
71
72
73
74
75
76
        self.actual_batch_size = self.nbatch // self.config['updates_per_batch']
        self.accumulate_train_batches = int(np.ceil( self.actual_batch_size / self.config['max_minibatch_size'] ))
        self.mem_limited_batch_size = self.actual_batch_size // self.accumulate_train_batches
        if self.nbatch % self.actual_batch_size != 0 or self.nbatch % self.mem_limited_batch_size != 0:
            print("#################################################")
            print("WARNING: MEMORY LIMITED BATCHING NOT SET PROPERLY")
            print("#################################################")
Dipam Chakraborty's avatar
Dipam Chakraborty committed
77
78
        replay_shape = (n_pi, nsteps, nenvs)
        self.retune_selector = RetuneSelector(nenvs, observation_space, action_space, replay_shape,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
79
80
                                              skips = self.config['skips'], 
                                              n_pi = n_pi,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
81
82
                                              num_retunes = self.config['num_retunes'],
                                              flat_buffer = self.config['flattened_buffer'])
83
        self.save_success = 0
Dipam Chakraborty's avatar
Dipam Chakraborty committed
84
85
        self.target_timesteps = 8_000_000
        self.buffer_time = 20 # TODO: Could try to do a median or mean time step check instead
86
        self.max_time = 100000000
Dipam Chakraborty's avatar
Dipam Chakraborty committed
87
88
89
90
91
92
93
94
        self.maxrewep_lenbuf = deque(maxlen=100)
        self.gamma = self.config['gamma']
        self.adaptive_discount_tuner = AdaptiveDiscountTuner(self.gamma, momentum=0.98, eplenmult=3)
        
        self.lr = config['lr']
        self.ent_coef = config['entropy_coeff']
        
        self.last_dones = np.zeros((nw * self.config['num_envs_per_worker'],))
95
        self.make_distr = dist_build(action_space)
96
        self.retunes_completed = 0
Dipam Chakraborty's avatar
Dipam Chakraborty committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        
    def to_tensor(self, arr):
        return torch.from_numpy(arr).to(self.device)
        
    @override(TorchPolicy)
    def learn_on_batch(self, samples):
        """Fused compute gradients and apply gradients call.
        Either this or the combination of compute/apply grads must be
        implemented by subclasses.
        Returns:
            grad_info: dictionary of extra metadata from compute_gradients().
        Examples:
            >>> batch = ev.sample()
            >>> ev.learn_on_batch(samples)
        Reference: https://github.com/ray-project/ray/blob/master/rllib/policy/policy.py#L279-L316
        """
        ## Config data values
        nbatch = self.nbatch
        nbatch_train = self.mem_limited_batch_size 
        gamma, lam = self.gamma, self.config['lambda']
        nsteps = self.config['rollout_fragment_length']
        nenvs = nbatch//nsteps
        ts = (nenvs, nsteps)
        mb_dones = unroll(samples['dones'], ts)
        
        ## Reward Normalization - No reward norm works well for many envs
        if self.config['standardize_rewards']:
            mb_origrewards = unroll(samples['rewards'], ts)
            mb_rewards =  np.zeros_like(mb_origrewards)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
126
            mb_rewards[0] = self.rewnorm.normalize(mb_origrewards[0], self.last_dones, self.config["reset_returns"])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
127
128
129
130
131
            for ii in range(1, nsteps):
                mb_rewards[ii] = self.rewnorm.normalize(mb_origrewards[ii], mb_dones[ii-1])
            self.last_dones = mb_dones[-1]
        else:
            mb_rewards = unroll(samples['rewards'], ts)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
132
       
133
        # Weird hack that helps in many envs (Yes keep it after reward normalization)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
134
135
136
        rew_scale = self.config["scale_reward"]
        if rew_scale != 1.0:
            mb_rewards *= rew_scale
Dipam Chakraborty's avatar
Dipam Chakraborty committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        
        should_skip_train_step = self.best_reward_model_select(samples)
        if should_skip_train_step:
            self.update_batch_time()
            return {} # Not doing last optimization step - This is intentional due to noisy gradients
          
        obs = samples['obs']

        ## Value prediction
        next_obs = unroll(samples['new_obs'], ts)[-1]
        last_values, _ = self.model.vf_pi(next_obs, ret_numpy=True, no_grad=True, to_torch=True)
        values = np.empty((nbatch,), dtype=np.float32)
        for start in range(0, nbatch, nbatch_train): # Causes OOM up if trying to do all at once
            end = start + nbatch_train
            values[start:end], _ = self.model.vf_pi(samples['obs'][start:end], ret_numpy=True, no_grad=True, to_torch=True)
        
        ## GAE
        mb_values = unroll(values, ts)
        mb_returns = np.zeros_like(mb_rewards)
        mb_advs = np.zeros_like(mb_rewards)
        lastgaelam = 0
        for t in reversed(range(nsteps)):
            if t == nsteps - 1:
                nextvalues = last_values
            else:
                nextvalues = mb_values[t+1]
            nextnonterminal = 1.0 - mb_dones[t]
            delta = mb_rewards[t] + gamma * nextvalues * nextnonterminal - mb_values[t]
            mb_advs[t] = lastgaelam = delta + gamma * lam * nextnonterminal * lastgaelam
        mb_returns = mb_advs + mb_values
        
        ## Data from config
        cliprange, vfcliprange = self.config['clip_param'], self.config['vf_clip_param']
        lrnow = self.lr
        max_grad_norm = self.config['grad_clip']
        ent_coef, vf_coef = self.ent_coef, self.config['vf_loss_coeff']
        
        neglogpacs = -samples['action_logp'] ## np.isclose seems to be True always, otherwise compute again if needed
        noptepochs = self.config['num_sgd_iter']
        actions = samples['actions']
        returns = roll(mb_returns)
        
179
180
181
        advs = returns - values
        normalized_advs = (advs - np.mean(advs)) / (np.std(advs) + 1e-8) 
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        ## Train multiple epochs
        optim_count = 0
        inds = np.arange(nbatch)
        for _ in range(noptepochs):
            np.random.shuffle(inds)
            for start in range(0, nbatch, nbatch_train):
                end = start + nbatch_train
                mbinds = inds[start:end]
                slices = (self.to_tensor(arr[mbinds]) for arr in (obs, returns, actions, values, neglogpacs, normalized_advs))
                optim_count += 1
                apply_grad = (optim_count % self.accumulate_train_batches) == 0
                self._batch_train(apply_grad, self.accumulate_train_batches,
                                  lrnow, cliprange, vfcliprange, max_grad_norm, ent_coef, vf_coef, *slices)

Dipam Chakraborty's avatar
Dipam Chakraborty committed
196
        ## Distill with aux head
Dipam Chakraborty's avatar
Dipam Chakraborty committed
197
        should_retune = self.retune_selector.update(unroll(obs, ts), mb_returns)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
198
199
200
        if should_retune:
            self.aux_train()
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        self.update_gamma(samples)
        self.update_lr()
        self.update_ent_coef()
            
        self.update_batch_time()
        return {}
    
    def update_batch_time(self):
        self.time_elapsed += time.time() - self.batch_end_time
        self.batch_end_time = time.time()
        
    def _batch_train(self, apply_grad, num_accumulate, 
                     lr, cliprange, vfcliprange, max_grad_norm,
                     ent_coef, vf_coef,
                     obs, returns, actions, values, neglogpac_old, advs):
        
        for g in self.optimizer.param_groups:
            g['lr'] = lr
        vpred, pi_logits = self.model.vf_pi(obs, ret_numpy=False, no_grad=False, to_torch=False)
220
221
222
        pd = self.make_distr(pi_logits)
        neglogpac = -pd.log_prob(actions[...,None]).squeeze(1)
        entropy = torch.mean(pd.entropy())
Dipam Chakraborty's avatar
Dipam Chakraborty committed
223

Dipam Chakraborty's avatar
Dipam Chakraborty committed
224
        vf_loss = .5 * torch.mean(torch.pow((vpred - returns), 2)) * vf_coef
Dipam Chakraborty's avatar
Dipam Chakraborty committed
225
226
227
228
229
230

        ratio = torch.exp(neglogpac_old - neglogpac)
        pg_losses1 = -advs * ratio
        pg_losses2 = -advs * torch.clamp(ratio, 1-cliprange, 1+cliprange)
        pg_loss = torch.mean(torch.max(pg_losses1, pg_losses2))

Dipam Chakraborty's avatar
Dipam Chakraborty committed
231
        loss = pg_loss - entropy * ent_coef
Dipam Chakraborty's avatar
Dipam Chakraborty committed
232
233
        
        loss = loss / num_accumulate
Dipam Chakraborty's avatar
Dipam Chakraborty committed
234
        vf_loss = vf_loss / num_accumulate
Dipam Chakraborty's avatar
Dipam Chakraborty committed
235
236

        loss.backward()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
237
        vf_loss.backward()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
238
239
        if apply_grad:
            self.optimizer.step()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
240
            self.value_optimizer.step()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
241
            self.optimizer.zero_grad()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
242
            self.value_optimizer.zero_grad()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
243
244

        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
245
246
    def aux_train(self):
        for g in self.aux_optimizer.param_groups:
Dipam Chakraborty's avatar
Dipam Chakraborty committed
247
            g['lr'] = self.config['aux_lr']
Dipam Chakraborty's avatar
Dipam Chakraborty committed
248
249
        nbatch_train = self.mem_limited_batch_size 
        retune_epochs = self.config['retune_epochs']
Dipam Chakraborty's avatar
Dipam Chakraborty committed
250
        replay_shape = self.retune_selector.vtarg_replay.shape
Dipam Chakraborty's avatar
Dipam Chakraborty committed
251
        replay_pi = np.empty((*replay_shape, self.retune_selector.ac_space.n), dtype=np.float32)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
252

Dipam Chakraborty's avatar
Dipam Chakraborty committed
253
254
        for nnpi in range(self.retune_selector.n_pi):
            for ne in range(self.retune_selector.nenvs):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
255
                _, replay_pi[nnpi, :, ne] = self.model.vf_pi(self.retune_selector.exp_replay[nnpi, :, ne], 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
256
                                                             ret_numpy=True, no_grad=True, to_torch=True)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
257
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
258
        # Tune vf and pi heads to older predictions with (augmented?) observations
Dipam Chakraborty's avatar
Dipam Chakraborty committed
259
        for ep in range(retune_epochs):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
260
            for slices in self.retune_selector.make_minibatches(replay_pi):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
261
                self.tune_policy(slices[0], self.to_tensor(slices[1]), self.to_tensor(slices[2]))
262
                
263
        self.retunes_completed += 1
Dipam Chakraborty's avatar
Dipam Chakraborty committed
264
265
        self.retune_selector.retune_done()
 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
266
    def tune_policy(self, obs, target_vf, target_pi):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
267
268
        if self.config['augment_buffer']:
            obs_aug = np.empty(obs.shape, obs.dtype)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
269
            aug_idx = np.random.randint(self.config['augment_randint_num'], size=len(obs))
Dipam Chakraborty's avatar
Dipam Chakraborty committed
270
271
272
273
274
275
            obs_aug[aug_idx == 0] = pad_and_random_crop(obs[aug_idx == 0], 64, 10)
            obs_aug[aug_idx == 1] = random_cutout_color(obs[aug_idx == 1], 10, 30)
            obs_aug[aug_idx >= 2] = obs[aug_idx >= 2]
            obs_in = self.to_tensor(obs_aug)
        else:
            obs_in = self.to_tensor(obs)
276
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
277
        vpred, pi_logits = self.model.vf_pi(obs_in, ret_numpy=False, no_grad=False, to_torch=False)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
278
279
        aux_vpred = self.model.aux_value_function()
        aux_loss = .5 * torch.mean(torch.pow(aux_vpred - target_vf, 2))
Dipam Chakraborty's avatar
Dipam Chakraborty committed
280
        
281
282
283
284
        target_pd = self.make_distr(target_pi)
        pd = self.make_distr(pi_logits)
        pi_loss = td.kl_divergence(target_pd, pd).mean()
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
285
        loss = pi_loss + aux_loss
Dipam Chakraborty's avatar
Dipam Chakraborty committed
286
287
        
        loss.backward()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
288
289
        self.aux_optimizer.step()
        self.aux_optimizer.zero_grad()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
290
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
291
292
293
294
295
296
        vf_loss = .5 * torch.mean(torch.pow(vpred - target_vf, 2))

        vf_loss.backward()
        self.value_optimizer.step()
        self.value_optimizer.zero_grad()
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
297
    def best_reward_model_select(self, samples):
298
        self.timesteps_total += len(samples['dones'])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
        
        ## Best reward model selection
        eprews = [info['episode']['r'] for info in samples['infos'] if 'episode' in info]
        self.reward_deque.extend(eprews)
        mean_reward = safe_mean(eprews) if len(eprews) >= 100 else safe_mean(self.reward_deque)
        if self.best_reward < mean_reward:
            self.best_reward = mean_reward
            self.best_weights = self.get_weights()["current_weights"]
            self.best_rew_tsteps = self.timesteps_total
           
        if self.timesteps_total > self.target_timesteps or (self.time_elapsed + self.buffer_time) > self.max_time:
            if self.best_weights is not None:
                self.set_model_weights(self.best_weights)
                return True
            
        return False
    
    def update_lr(self):
        if self.config['lr_schedule'] == 'linear':
            self.lr = linear_schedule(initial_val=self.config['lr'],
                                      final_val=self.config['final_lr'],
                                      current_steps=self.timesteps_total,
                                      total_steps=self.target_timesteps)
            
        elif self.config['lr_schedule'] == 'exponential':
            self.lr = 0.997 * self.lr 

    
    def update_ent_coef(self):
        if self.config['entropy_schedule']:
            self.ent_coef = linear_schedule(initial_val=self.config['entropy_coeff'], 
                                            final_val=self.config['final_entropy_coeff'], 
                                            current_steps=self.timesteps_total, 
                                            total_steps=self.target_timesteps)
    
    def update_gamma(self, samples):
        if self.config['adaptive_gamma']:
            epinfobuf = [info['episode'] for info in samples['infos'] if 'episode' in info]
            self.maxrewep_lenbuf.extend([epinfo['l'] for epinfo in epinfobuf if epinfo['r'] >= self.max_reward])
            sorted_nth = lambda buf, n: np.nan if len(buf) < 100 else sorted(self.maxrewep_lenbuf.copy())[n]
            target_horizon = sorted_nth(self.maxrewep_lenbuf, 80)
            self.gamma = self.adaptive_discount_tuner.update(target_horizon)

        
    def get_custom_state_vars(self):
        return {
            "time_elapsed": self.time_elapsed,
            "timesteps_total": self.timesteps_total,
            "best_weights": self.best_weights,
            "reward_deque": self.reward_deque,
            "batch_end_time": self.batch_end_time,
            "gamma": self.gamma,
            "maxrewep_lenbuf": self.maxrewep_lenbuf,
            "lr": self.lr,
            "ent_coef": self.ent_coef,
            "rewnorm": self.rewnorm,
            "best_rew_tsteps": self.best_rew_tsteps,
            "best_reward": self.best_reward,
            "last_dones": self.last_dones,
358
            "retunes_completed": self.retunes_completed,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
359
360
361
362
363
364
365
366
367
368
        }
    
    def set_custom_state_vars(self, custom_state_vars):
        self.time_elapsed = custom_state_vars["time_elapsed"]
        self.timesteps_total = custom_state_vars["timesteps_total"]
        self.best_weights = custom_state_vars["best_weights"]
        self.reward_deque = custom_state_vars["reward_deque"]
        self.batch_end_time = custom_state_vars["batch_end_time"]
        self.gamma = self.adaptive_discount_tuner.gamma = custom_state_vars["gamma"]
        self.maxrewep_lenbuf = custom_state_vars["maxrewep_lenbuf"]
369
        self.lr = custom_state_vars["lr"]
Dipam Chakraborty's avatar
Dipam Chakraborty committed
370
371
372
373
374
        self.ent_coef = custom_state_vars["ent_coef"]
        self.rewnorm = custom_state_vars["rewnorm"]
        self.best_rew_tsteps = custom_state_vars["best_rew_tsteps"]
        self.best_reward = custom_state_vars["best_reward"]
        self.last_dones = custom_state_vars["last_dones"]
375
        self.retunes_completed = custom_state_vars["retunes_completed"]
Dipam Chakraborty's avatar
Dipam Chakraborty committed
376
377
378
379
380
381
382
383
    
    @override(TorchPolicy)
    def get_weights(self):
        weights = {}
        weights["current_weights"] = {
            k: v.cpu().detach().numpy()
            for k, v in self.model.state_dict().items()
        }
384
385
386
387
388
389
390
391
392
#         weights["optimizer_state"] = {
#             k: v
#             for k, v in self.optimizer.state_dict().items()
#         }
#         weights["aux_optimizer_state"] = {
#             k: v
#             for k, v in self.aux_optimizer.state_dict().items()
#         }
#         weights["custom_state_vars"] = self.get_custom_state_vars()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
393
394
395
396
397
398
        return weights
        
    
    @override(TorchPolicy)
    def set_weights(self, weights):
        self.set_model_weights(weights["current_weights"])
399
400
401
#         self.set_optimizer_state(weights["optimizer_state"])
#         self.set_aux_optimizer_state(weights["aux_optimizer_state"])
#         self.set_custom_state_vars(weights["custom_state_vars"])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
402
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
403
404
405
406
    def set_aux_optimizer_state(self, aux_optimizer_state):
        aux_optimizer_state = convert_to_torch_tensor(aux_optimizer_state, device=self.device)
        self.aux_optimizer.load_state_dict(aux_optimizer_state)
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
407
408
409
410
411
412
413
    def set_optimizer_state(self, optimizer_state):
        optimizer_state = convert_to_torch_tensor(optimizer_state, device=self.device)
        self.optimizer.load_state_dict(optimizer_state)
        
    def set_model_weights(self, model_weights):
        model_weights = convert_to_torch_tensor(model_weights, device=self.device)
        self.model.load_state_dict(model_weights)