custom_torch_ppg.py 18.5 KB
Newer Older
Dipam Chakraborty's avatar
Dipam Chakraborty committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from ray.rllib.policy.torch_policy import TorchPolicy
import numpy as np
from ray.rllib.utils.torch_ops import convert_to_non_torch_type, convert_to_torch_tensor
from ray.rllib.utils import try_import_torch
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.annotations import override
from collections import deque
from .utils import *
import time

torch, nn = try_import_torch()

class CustomTorchPolicy(TorchPolicy):
    """Example of a random policy
    If you are using tensorflow/pytorch to build custom policies,
    you might find `build_tf_policy` and `build_torch_policy` to
    be useful.
    Adopted from examples from https://docs.ray.io/en/master/rllib-concepts.html
    """

    def __init__(self, observation_space, action_space, config):
        self.config = config

        self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        dist_class, logit_dim = ModelCatalog.get_action_dist(
            action_space, self.config["model"], framework="torch")
        self.model = ModelCatalog.get_model_v2(
                        obs_space=observation_space,
                        action_space=action_space,
                        num_outputs=logit_dim,
                        model_config=self.config["model"],
                        framework="torch",
                        device=self.device,
                     )

        TorchPolicy.__init__(
            self,
            observation_space=observation_space,
            action_space=action_space,
            config=config,
            model=self.model,
            loss=None,
            action_distribution_class=dist_class,
        )

        self.framework = "torch"
Dipam Chakraborty's avatar
Dipam Chakraborty committed
47
48
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=5e-4)
        self.aux_optimizer = torch.optim.Adam(self.model.parameters(), lr=5e-4)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        self.max_reward = self.config['env_config']['return_max']
        self.rewnorm = RewardNormalizer(cliprew=self.max_reward) ## TODO: Might need to go to custom state
        self.reward_deque = deque(maxlen=100)
        self.best_reward = -np.inf
        self.best_weights = None
        self.time_elapsed = 0
        self.batch_end_time = time.time()
        self.timesteps_total = 0
        self.best_rew_tsteps = 0
        
        nw = self.config['num_workers'] if self.config['num_workers'] > 0 else 1
        self.nbatch = nw * self.config['num_envs_per_worker'] * self.config['rollout_fragment_length']
        self.actual_batch_size = self.nbatch // self.config['updates_per_batch']
        self.accumulate_train_batches = int(np.ceil( self.actual_batch_size / self.config['max_minibatch_size'] ))
        self.mem_limited_batch_size = self.actual_batch_size // self.accumulate_train_batches
        if self.nbatch % self.actual_batch_size != 0 or self.nbatch % self.mem_limited_batch_size != 0:
            print("#################################################")
            print("WARNING: MEMORY LIMITED BATCHING NOT SET PROPERLY")
            print("#################################################")
        self.retune_selector = RetuneSelector(self.nbatch, observation_space, action_space, 
                                              skips = self.config['retune_skips'], 
                                              replay_size = self.config['retune_replay_size'], 
                                              num_retunes = self.config['num_retunes'])
        
        
        self.target_timesteps = 8_000_000
        self.buffer_time = 20 # TODO: Could try to do a median or mean time step check instead
        self.max_time = 7200
        self.maxrewep_lenbuf = deque(maxlen=100)
        self.gamma = self.config['gamma']
        self.adaptive_discount_tuner = AdaptiveDiscountTuner(self.gamma, momentum=0.98, eplenmult=3)
        
        self.lr = config['lr']
        self.ent_coef = config['entropy_coeff']
        
        self.last_dones = np.zeros((nw * self.config['num_envs_per_worker'],))
        
    def to_tensor(self, arr):
        return torch.from_numpy(arr).to(self.device)
        
    @override(TorchPolicy)
    def learn_on_batch(self, samples):
        """Fused compute gradients and apply gradients call.
        Either this or the combination of compute/apply grads must be
        implemented by subclasses.
        Returns:
            grad_info: dictionary of extra metadata from compute_gradients().
        Examples:
            >>> batch = ev.sample()
            >>> ev.learn_on_batch(samples)
        Reference: https://github.com/ray-project/ray/blob/master/rllib/policy/policy.py#L279-L316
        """
        
        ## Config data values
        nbatch = self.nbatch
        nbatch_train = self.mem_limited_batch_size 
        gamma, lam = self.gamma, self.config['lambda']
        nsteps = self.config['rollout_fragment_length']
        nenvs = nbatch//nsteps
        ts = (nenvs, nsteps)
        mb_dones = unroll(samples['dones'], ts)
        
        ## Reward Normalization - No reward norm works well for many envs
        if self.config['standardize_rewards']:
            mb_origrewards = unroll(samples['rewards'], ts)
            mb_rewards =  np.zeros_like(mb_origrewards)
            mb_rewards[0] = self.rewnorm.normalize(mb_origrewards[0], self.last_dones)
            for ii in range(1, nsteps):
                mb_rewards[ii] = self.rewnorm.normalize(mb_origrewards[ii], mb_dones[ii-1])
            self.last_dones = mb_dones[-1]
        else:
            mb_rewards = unroll(samples['rewards'], ts)
        
        should_skip_train_step = self.best_reward_model_select(samples)
        if should_skip_train_step:
            self.update_batch_time()
            return {} # Not doing last optimization step - This is intentional due to noisy gradients
          
        obs = samples['obs']

        ## Value prediction
        next_obs = unroll(samples['new_obs'], ts)[-1]
        last_values, _ = self.model.vf_pi(next_obs, ret_numpy=True, no_grad=True, to_torch=True)
        values = np.empty((nbatch,), dtype=np.float32)
        for start in range(0, nbatch, nbatch_train): # Causes OOM up if trying to do all at once
            end = start + nbatch_train
            values[start:end], _ = self.model.vf_pi(samples['obs'][start:end], ret_numpy=True, no_grad=True, to_torch=True)
        
        
        
        ## GAE
        mb_values = unroll(values, ts)
        mb_returns = np.zeros_like(mb_rewards)
        mb_advs = np.zeros_like(mb_rewards)
        lastgaelam = 0
        for t in reversed(range(nsteps)):
            if t == nsteps - 1:
                nextvalues = last_values
            else:
                nextvalues = mb_values[t+1]
            nextnonterminal = 1.0 - mb_dones[t]
            delta = mb_rewards[t] + gamma * nextvalues * nextnonterminal - mb_values[t]
            mb_advs[t] = lastgaelam = delta + gamma * lam * nextnonterminal * lastgaelam
        mb_returns = mb_advs + mb_values
        
        ## Data from config
        cliprange, vfcliprange = self.config['clip_param'], self.config['vf_clip_param']
        lrnow = self.lr
        max_grad_norm = self.config['grad_clip']
        ent_coef, vf_coef = self.ent_coef, self.config['vf_loss_coeff']
        
        neglogpacs = -samples['action_logp'] ## np.isclose seems to be True always, otherwise compute again if needed
        noptepochs = self.config['num_sgd_iter']
        actions = samples['actions']
        returns = roll(mb_returns)
        
        ## Train multiple epochs
        optim_count = 0
        inds = np.arange(nbatch)
        for _ in range(noptepochs):
            np.random.shuffle(inds)
            normalized_advs = returns - values
            # Can do this because actual_batch_size is a multiple of mem_limited_batch_size
            for start in range(0, nbatch, self.actual_batch_size):
                end = start + self.actual_batch_size
                mbinds = inds[start:end]
                advs_batch = normalized_advs[mbinds].copy()
                normalized_advs[mbinds] = (advs_batch - np.mean(advs_batch)) / (np.std(advs_batch) + 1e-8) 
            for start in range(0, nbatch, nbatch_train):
                end = start + nbatch_train
                mbinds = inds[start:end]
                slices = (self.to_tensor(arr[mbinds]) for arr in (obs, returns, actions, values, neglogpacs, normalized_advs))
                optim_count += 1
                apply_grad = (optim_count % self.accumulate_train_batches) == 0
                self._batch_train(apply_grad, self.accumulate_train_batches,
                                  lrnow, cliprange, vfcliprange, max_grad_norm, ent_coef, vf_coef, *slices)

Dipam Chakraborty's avatar
Dipam Chakraborty committed
186
187
188
189
190
191
192
        ## Distill with aux head
        should_retune = self.retune_selector.update(obs, returns)
        if should_retune:
            self.aux_train()
            self.update_batch_time()
            return {}
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        self.update_gamma(samples)
        self.update_lr()
        self.update_ent_coef()
            
        self.update_batch_time()
        return {}
    
    def update_batch_time(self):
        self.time_elapsed += time.time() - self.batch_end_time
        self.batch_end_time = time.time()
        
    def _batch_train(self, apply_grad, num_accumulate, 
                     lr, cliprange, vfcliprange, max_grad_norm,
                     ent_coef, vf_coef,
                     obs, returns, actions, values, neglogpac_old, advs):
        
        for g in self.optimizer.param_groups:
            g['lr'] = lr
        # Advantages are normalized with full size batch instead of memory limited batch
#         advs = returns - values 
#         advs = (advs - torch.mean(advs)) / (torch.std(advs) + 1e-8)
        vpred, pi_logits = self.model.vf_pi(obs, ret_numpy=False, no_grad=False, to_torch=False)
        neglogpac = neglogp_actions(pi_logits, actions)
        entropy = torch.mean(pi_entropy(pi_logits))

Dipam Chakraborty's avatar
Dipam Chakraborty committed
218
        vf_loss = .5 * torch.mean(torch.pow((vpred - returns), 2))
Dipam Chakraborty's avatar
Dipam Chakraborty committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

        ratio = torch.exp(neglogpac_old - neglogpac)
        pg_losses1 = -advs * ratio
        pg_losses2 = -advs * torch.clamp(ratio, 1-cliprange, 1+cliprange)
        pg_loss = torch.mean(torch.max(pg_losses1, pg_losses2))

        loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef
        
        loss = loss / num_accumulate

        loss.backward()
        if apply_grad:
            self.optimizer.step()
            self.optimizer.zero_grad()

        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
235
236
237
    def aux_train(self):
        for g in self.aux_optimizer.param_groups:
            g['lr'] = self.lr
Dipam Chakraborty's avatar
Dipam Chakraborty committed
238
        nbatch_train = self.mem_limited_batch_size 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
239
        aux_nbatch_train = self.config['aux_mbsize'] 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
240
241
242
243
244
245
246
247
        retune_epochs = self.config['retune_epochs']
        replay_size = self.retune_selector.replay_size
        replay_pi = np.empty((replay_size, self.retune_selector.ac_space.n), dtype=np.float32)

        # Store current value function and policy logits
        for start in range(0, replay_size, nbatch_train):
            end = start + nbatch_train
            replay_batch = self.retune_selector.exp_replay[start:end]
Dipam Chakraborty's avatar
Dipam Chakraborty committed
248
249
            _, replay_pi[start:end] = self.model.vf_pi(replay_batch, 
                                                       ret_numpy=True, no_grad=True, to_torch=True)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
250
251
252
253
254
255
        
        optim_count = 0
        # Tune vf and pi heads to older predictions with augmented observations
        inds = np.arange(len(self.retune_selector.exp_replay))
        for ep in range(retune_epochs):
            np.random.shuffle(inds)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
256
257
            for start in range(0, replay_size, aux_nbatch_train):
                end = start + aux_nbatch_train
Dipam Chakraborty's avatar
Dipam Chakraborty committed
258
259
260
                mbinds = inds[start:end]
                optim_count += 1
                slices = [self.retune_selector.exp_replay[mbinds], 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
261
                          self.to_tensor(self.retune_selector.vtarg_replay[mbinds]), 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
262
                          self.to_tensor(replay_pi[mbinds])]
Dipam Chakraborty's avatar
Dipam Chakraborty committed
263
                self.tune_policy(*slices)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
264
265
266

        self.retune_selector.retune_done()
 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
267
268
269
270
271
272
273
274
    def tune_policy(self, obs, target_vf, target_pi):
#         obs_aug = np.empty(obs.shape, obs.dtype)
#         aug_idx = np.random.randint(3, size=len(obs))
#         obs_aug[aug_idx == 0] = pad_and_random_crop(obs[aug_idx == 0], 64, 10)
#         obs_aug[aug_idx == 1] = random_cutout_color(obs[aug_idx == 1], 10, 30)
#         obs_aug[aug_idx == 2] = obs[aug_idx == 2]
#         obs_aug = self.to_tensor(obs_aug)
        obs = self.to_tensor(obs)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
275
276
277
        with torch.no_grad():
            tpi_log_softmax = nn.functional.log_softmax(target_pi, dim=1)
            tpi_softmax = torch.exp(tpi_log_softmax)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
278
279
        vpred, pi_logits = self.model.vf_pi(obs, ret_numpy=False, no_grad=False, to_torch=False)
        aux_vpred = self.model.aux_value_function()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
280
281
282
        pi_log_softmax =  nn.functional.log_softmax(pi_logits, dim=1)
        pi_loss = torch.mean(torch.sum(tpi_softmax * (tpi_log_softmax - pi_log_softmax) , dim=1)) # kl_div torch 1.3.1 has numerical issues
        vf_loss = .5 * torch.mean(torch.pow(vpred - target_vf, 2))
Dipam Chakraborty's avatar
Dipam Chakraborty committed
283
        aux_loss = .5 * torch.mean(torch.pow(aux_vpred - target_vf, 2))
Dipam Chakraborty's avatar
Dipam Chakraborty committed
284
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
285
        loss = vf_loss + pi_loss + aux_loss
Dipam Chakraborty's avatar
Dipam Chakraborty committed
286
287
        
        loss.backward()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
288
289
        self.aux_optimizer.step()
        self.aux_optimizer.zero_grad()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        
    def best_reward_model_select(self, samples):
        self.timesteps_total += self.nbatch
        
        ## Best reward model selection
        eprews = [info['episode']['r'] for info in samples['infos'] if 'episode' in info]
        self.reward_deque.extend(eprews)
        mean_reward = safe_mean(eprews) if len(eprews) >= 100 else safe_mean(self.reward_deque)
        if self.best_reward < mean_reward:
            self.best_reward = mean_reward
            self.best_weights = self.get_weights()["current_weights"]
            self.best_rew_tsteps = self.timesteps_total
           
        if self.timesteps_total > self.target_timesteps or (self.time_elapsed + self.buffer_time) > self.max_time:
            if self.best_weights is not None:
                self.set_model_weights(self.best_weights)
                return True
            
        return False
    
    def update_lr(self):
        if self.config['lr_schedule'] == 'linear':
            self.lr = linear_schedule(initial_val=self.config['lr'],
                                      final_val=self.config['final_lr'],
                                      current_steps=self.timesteps_total,
                                      total_steps=self.target_timesteps)
            
        elif self.config['lr_schedule'] == 'exponential':
            self.lr = 0.997 * self.lr 

    
    def update_ent_coef(self):
        if self.config['entropy_schedule']:
            self.ent_coef = linear_schedule(initial_val=self.config['entropy_coeff'], 
                                            final_val=self.config['final_entropy_coeff'], 
                                            current_steps=self.timesteps_total, 
                                            total_steps=self.target_timesteps)
    
    def update_gamma(self, samples):
        if self.config['adaptive_gamma']:
            epinfobuf = [info['episode'] for info in samples['infos'] if 'episode' in info]
            self.maxrewep_lenbuf.extend([epinfo['l'] for epinfo in epinfobuf if epinfo['r'] >= self.max_reward])
            sorted_nth = lambda buf, n: np.nan if len(buf) < 100 else sorted(self.maxrewep_lenbuf.copy())[n]
            target_horizon = sorted_nth(self.maxrewep_lenbuf, 80)
            self.gamma = self.adaptive_discount_tuner.update(target_horizon)

        
    def get_custom_state_vars(self):
        return {
            "time_elapsed": self.time_elapsed,
            "timesteps_total": self.timesteps_total,
            "best_weights": self.best_weights,
            "reward_deque": self.reward_deque,
            "batch_end_time": self.batch_end_time,
            "num_retunes": self.retune_selector.num_retunes,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
345
#             "retune_selector": self.retune_selector,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
            "gamma": self.gamma,
            "maxrewep_lenbuf": self.maxrewep_lenbuf,
            "lr": self.lr,
            "ent_coef": self.ent_coef,
            "rewnorm": self.rewnorm,
            "best_rew_tsteps": self.best_rew_tsteps,
            "best_reward": self.best_reward,
            "last_dones": self.last_dones,
        }
    
    def set_custom_state_vars(self, custom_state_vars):
        self.time_elapsed = custom_state_vars["time_elapsed"]
        self.timesteps_total = custom_state_vars["timesteps_total"]
        self.best_weights = custom_state_vars["best_weights"]
        self.reward_deque = custom_state_vars["reward_deque"]
        self.batch_end_time = custom_state_vars["batch_end_time"]
        self.retune_selector.set_num_retunes(custom_state_vars["num_retunes"])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
363
#         self.retune_selector = custom_state_vars["num_retunes"]
Dipam Chakraborty's avatar
Dipam Chakraborty committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        self.gamma = self.adaptive_discount_tuner.gamma = custom_state_vars["gamma"]
        self.maxrewep_lenbuf = custom_state_vars["maxrewep_lenbuf"]
        self.lr =custom_state_vars["lr"]
        self.ent_coef = custom_state_vars["ent_coef"]
        self.rewnorm = custom_state_vars["rewnorm"]
        self.best_rew_tsteps = custom_state_vars["best_rew_tsteps"]
        self.best_reward = custom_state_vars["best_reward"]
        self.last_dones = custom_state_vars["last_dones"]
    
    @override(TorchPolicy)
    def get_weights(self):
        weights = {}
        weights["current_weights"] = {
            k: v.cpu().detach().numpy()
            for k, v in self.model.state_dict().items()
        }
        weights["optimizer_state"] = {
            k: v
            for k, v in self.optimizer.state_dict().items()
        }
Dipam Chakraborty's avatar
Dipam Chakraborty committed
384
385
386
387
        weights["aux_optimizer_state"] = {
            k: v
            for k, v in self.aux_optimizer.state_dict().items()
        }
Dipam Chakraborty's avatar
Dipam Chakraborty committed
388
389
390
391
392
393
394
395
        weights["custom_state_vars"] = self.get_custom_state_vars()
        return weights
        
    
    @override(TorchPolicy)
    def set_weights(self, weights):
        self.set_model_weights(weights["current_weights"])
        self.set_optimizer_state(weights["optimizer_state"])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
396
        self.set_aux_optimizer_state(weights["aux_optimizer_state"])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
397
398
        self.set_custom_state_vars(weights["custom_state_vars"])
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
399
400
401
402
    def set_aux_optimizer_state(self, aux_optimizer_state):
        aux_optimizer_state = convert_to_torch_tensor(aux_optimizer_state, device=self.device)
        self.aux_optimizer.load_state_dict(aux_optimizer_state)
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
403
404
405
406
407
408
409
    def set_optimizer_state(self, optimizer_state):
        optimizer_state = convert_to_torch_tensor(optimizer_state, device=self.device)
        self.optimizer.load_state_dict(optimizer_state)
        
    def set_model_weights(self, model_weights):
        model_weights = convert_to_torch_tensor(model_weights, device=self.device)
        self.model.load_state_dict(model_weights)