custom_torch_ppg.py 19.9 KB
Newer Older
Dipam Chakraborty's avatar
Dipam Chakraborty committed
1
2
3
4
5
6
7
8
9
10
11
from ray.rllib.policy.torch_policy import TorchPolicy
import numpy as np
from ray.rllib.utils.torch_ops import convert_to_non_torch_type, convert_to_torch_tensor
from ray.rllib.utils import try_import_torch
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.annotations import override
from collections import deque
from .utils import *
import time

torch, nn = try_import_torch()
12
import torch.distributions as td
Dipam Chakraborty's avatar
Dipam Chakraborty committed
13
from torch.cuda.amp import autocast, GradScaler
Dipam Chakraborty's avatar
Dipam Chakraborty committed
14
15
16
17
18
19
20
21
22
23
24

class CustomTorchPolicy(TorchPolicy):
    """Example of a random policy
    If you are using tensorflow/pytorch to build custom policies,
    you might find `build_tf_policy` and `build_torch_policy` to
    be useful.
    Adopted from examples from https://docs.ray.io/en/master/rllib-concepts.html
    """

    def __init__(self, observation_space, action_space, config):
        self.config = config
25
26
        self.acion_space = action_space
        self.observation_space = observation_space
Dipam Chakraborty's avatar
Dipam Chakraborty committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

        self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        dist_class, logit_dim = ModelCatalog.get_action_dist(
            action_space, self.config["model"], framework="torch")
        self.model = ModelCatalog.get_model_v2(
                        obs_space=observation_space,
                        action_space=action_space,
                        num_outputs=logit_dim,
                        model_config=self.config["model"],
                        framework="torch",
                        device=self.device,
                     )

        TorchPolicy.__init__(
            self,
            observation_space=observation_space,
            action_space=action_space,
            config=config,
            model=self.model,
            loss=None,
            action_distribution_class=dist_class,
        )
49
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
50
        self.framework = "torch"
51
52
53
54

        
    def init_training(self):
        """ Init once only for the policy - Surely there should be a bette way to do this """
Dipam Chakraborty's avatar
Dipam Chakraborty committed
55
56
57
58
59
        aux_params = set(self.model.aux_vf.parameters())
        value_params = set(self.model.value_fc.parameters())
        network_params = set(self.model.parameters())
        aux_optim_params = list(network_params - value_params)
        ppo_optim_params = list(network_params - aux_params - value_params)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
60
61
62
63
        if not self.config['single_optimizer']:
            self.optimizer = torch.optim.Adam(ppo_optim_params, lr=self.config['lr'])
        else:
            self.optimizer = torch.optim.Adam(network_params, lr=self.config['lr'])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
64
65
        self.aux_optimizer = torch.optim.Adam(aux_optim_params, lr=self.config['aux_lr'])
        self.value_optimizer = torch.optim.Adam(value_params, lr=self.config['value_lr'])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
66
67
68
69
70
71
72
73
74
75
76
        self.max_reward = self.config['env_config']['return_max']
        self.rewnorm = RewardNormalizer(cliprew=self.max_reward) ## TODO: Might need to go to custom state
        self.reward_deque = deque(maxlen=100)
        self.best_reward = -np.inf
        self.best_weights = None
        self.time_elapsed = 0
        self.batch_end_time = time.time()
        self.timesteps_total = 0
        self.best_rew_tsteps = 0
        
        nw = self.config['num_workers'] if self.config['num_workers'] > 0 else 1
Dipam Chakraborty's avatar
Dipam Chakraborty committed
77
78
79
80
        nenvs = nw * self.config['num_envs_per_worker']
        nsteps = self.config['rollout_fragment_length']
        n_pi = self.config['n_pi']
        self.nbatch = nenvs * nsteps
Dipam Chakraborty's avatar
Dipam Chakraborty committed
81
82
83
84
85
86
87
        self.actual_batch_size = self.nbatch // self.config['updates_per_batch']
        self.accumulate_train_batches = int(np.ceil( self.actual_batch_size / self.config['max_minibatch_size'] ))
        self.mem_limited_batch_size = self.actual_batch_size // self.accumulate_train_batches
        if self.nbatch % self.actual_batch_size != 0 or self.nbatch % self.mem_limited_batch_size != 0:
            print("#################################################")
            print("WARNING: MEMORY LIMITED BATCHING NOT SET PROPERLY")
            print("#################################################")
Dipam Chakraborty's avatar
Dipam Chakraborty committed
88
        replay_shape = (n_pi, nsteps, nenvs)
89
        self.retune_selector = RetuneSelector(nenvs, self.observation_space, self.action_space, replay_shape,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
90
91
                                              skips = self.config['skips'], 
                                              n_pi = n_pi,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
92
93
                                              num_retunes = self.config['num_retunes'],
                                              flat_buffer = self.config['flattened_buffer'])
94
        self.save_success = 0
Dipam Chakraborty's avatar
Dipam Chakraborty committed
95
96
        self.target_timesteps = 8_000_000
        self.buffer_time = 20 # TODO: Could try to do a median or mean time step check instead
Dipam Chakraborty's avatar
Dipam Chakraborty committed
97
        self.max_time = self.config['max_time']
Dipam Chakraborty's avatar
Dipam Chakraborty committed
98
99
100
101
        self.maxrewep_lenbuf = deque(maxlen=100)
        self.gamma = self.config['gamma']
        self.adaptive_discount_tuner = AdaptiveDiscountTuner(self.gamma, momentum=0.98, eplenmult=3)
        
102
103
        self.lr = self.config['lr']
        self.ent_coef = self.config['entropy_coeff']
Dipam Chakraborty's avatar
Dipam Chakraborty committed
104
105
        
        self.last_dones = np.zeros((nw * self.config['num_envs_per_worker'],))
106
        self.make_distr = dist_build(self.action_space)
107
        self.retunes_completed = 0
Dipam Chakraborty's avatar
Dipam Chakraborty committed
108
        self.amp_scaler = GradScaler()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
109
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
110
111
        self.update_lr()
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
112
113
    def to_tensor(self, arr):
        return torch.from_numpy(arr).to(self.device)
114
115
116
117
    
    @override(TorchPolicy)
    def extra_action_out(self, input_dict, state_batches, model, action_dist):
        return {'values': model._value.tolist()}
Dipam Chakraborty's avatar
Dipam Chakraborty committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        
    @override(TorchPolicy)
    def learn_on_batch(self, samples):
        """Fused compute gradients and apply gradients call.
        Either this or the combination of compute/apply grads must be
        implemented by subclasses.
        Returns:
            grad_info: dictionary of extra metadata from compute_gradients().
        Examples:
            >>> batch = ev.sample()
            >>> ev.learn_on_batch(samples)
        Reference: https://github.com/ray-project/ray/blob/master/rllib/policy/policy.py#L279-L316
        """
        ## Config data values
        nbatch = self.nbatch
        nbatch_train = self.mem_limited_batch_size 
        gamma, lam = self.gamma, self.config['lambda']
        nsteps = self.config['rollout_fragment_length']
        nenvs = nbatch//nsteps
        ts = (nenvs, nsteps)
        mb_dones = unroll(samples['dones'], ts)
        
        ## Reward Normalization - No reward norm works well for many envs
        if self.config['standardize_rewards']:
            mb_origrewards = unroll(samples['rewards'], ts)
            mb_rewards =  np.zeros_like(mb_origrewards)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
144
            mb_rewards[0] = self.rewnorm.normalize(mb_origrewards[0], self.last_dones, self.config["reset_returns"])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
145
            for ii in range(1, nsteps):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
146
                mb_rewards[ii] = self.rewnorm.normalize(mb_origrewards[ii], mb_dones[ii-1], self.config["reset_returns"])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
147
148
149
            self.last_dones = mb_dones[-1]
        else:
            mb_rewards = unroll(samples['rewards'], ts)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
150
       
151
        # Weird hack that helps in many envs (Yes keep it after reward normalization)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
152
153
154
        rew_scale = self.config["scale_reward"]
        if rew_scale != 1.0:
            mb_rewards *= rew_scale
Dipam Chakraborty's avatar
Dipam Chakraborty committed
155
156
157
158
159
160
161
162
163
164
165
        
        should_skip_train_step = self.best_reward_model_select(samples)
        if should_skip_train_step:
            self.update_batch_time()
            return {} # Not doing last optimization step - This is intentional due to noisy gradients
          
        obs = samples['obs']

        ## Value prediction
        next_obs = unroll(samples['new_obs'], ts)[-1]
        last_values, _ = self.model.vf_pi(next_obs, ret_numpy=True, no_grad=True, to_torch=True)
166
        values = samples['values']
Dipam Chakraborty's avatar
Dipam Chakraborty committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        
        ## GAE
        mb_values = unroll(values, ts)
        mb_returns = np.zeros_like(mb_rewards)
        mb_advs = np.zeros_like(mb_rewards)
        lastgaelam = 0
        for t in reversed(range(nsteps)):
            if t == nsteps - 1:
                nextvalues = last_values
            else:
                nextvalues = mb_values[t+1]
            nextnonterminal = 1.0 - mb_dones[t]
            delta = mb_rewards[t] + gamma * nextvalues * nextnonterminal - mb_values[t]
            mb_advs[t] = lastgaelam = delta + gamma * lam * nextnonterminal * lastgaelam
        mb_returns = mb_advs + mb_values
        
        ## Data from config
        cliprange, vfcliprange = self.config['clip_param'], self.config['vf_clip_param']
        max_grad_norm = self.config['grad_clip']
        ent_coef, vf_coef = self.ent_coef, self.config['vf_loss_coeff']
        
188
        logp_actions = samples['action_logp'] ## np.isclose seems to be True always, otherwise compute again if needed
Dipam Chakraborty's avatar
Dipam Chakraborty committed
189
190
191
192
        noptepochs = self.config['num_sgd_iter']
        actions = samples['actions']
        returns = roll(mb_returns)
        
193
194
195
        advs = returns - values
        normalized_advs = (advs - np.mean(advs)) / (np.std(advs) + 1e-8) 
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
196
197
198
199
200
201
202
203
        ## Train multiple epochs
        optim_count = 0
        inds = np.arange(nbatch)
        for _ in range(noptepochs):
            np.random.shuffle(inds)
            for start in range(0, nbatch, nbatch_train):
                end = start + nbatch_train
                mbinds = inds[start:end]
204
                slices = (self.to_tensor(arr[mbinds]) for arr in (obs, returns, actions, values, logp_actions, normalized_advs))
Dipam Chakraborty's avatar
Dipam Chakraborty committed
205
206
207
                optim_count += 1
                apply_grad = (optim_count % self.accumulate_train_batches) == 0
                self._batch_train(apply_grad, self.accumulate_train_batches,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
208
                                  cliprange, vfcliprange, max_grad_norm, ent_coef, vf_coef, *slices)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
209

Dipam Chakraborty's avatar
Dipam Chakraborty committed
210
        ## Distill with aux head
Dipam Chakraborty's avatar
Dipam Chakraborty committed
211
        should_retune = self.retune_selector.update(unroll(obs, ts), mb_returns)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
212
213
214
        if should_retune:
            self.aux_train()
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
215
216
217
218
219
220
221
222
223
224
225
226
        self.update_gamma(samples)
        self.update_lr()
        self.update_ent_coef()
            
        self.update_batch_time()
        return {}
    
    def update_batch_time(self):
        self.time_elapsed += time.time() - self.batch_end_time
        self.batch_end_time = time.time()
        
    def _batch_train(self, apply_grad, num_accumulate, 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
227
                     cliprange, vfcliprange, max_grad_norm,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
228
                     ent_coef, vf_coef,
229
                     obs, returns, actions, values, logp_actions_old, advs):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
230
231
        
        vpred, pi_logits = self.model.vf_pi(obs, ret_numpy=False, no_grad=False, to_torch=False)
232
        pd = self.make_distr(pi_logits)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
233
        logp_actions = pd.log_prob(actions[...,None]).squeeze(1)
234
        entropy = torch.mean(pd.entropy())
Dipam Chakraborty's avatar
Dipam Chakraborty committed
235

Dipam Chakraborty's avatar
Dipam Chakraborty committed
236
        vf_loss = .5 * torch.mean(torch.pow((vpred - returns), 2)) * vf_coef
Dipam Chakraborty's avatar
Dipam Chakraborty committed
237

238
        ratio = torch.exp(logp_actions - logp_actions_old)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
239
240
241
242
        pg_losses1 = -advs * ratio
        pg_losses2 = -advs * torch.clamp(ratio, 1-cliprange, 1+cliprange)
        pg_loss = torch.mean(torch.max(pg_losses1, pg_losses2))

Dipam Chakraborty's avatar
Dipam Chakraborty committed
243
        loss = pg_loss - entropy * ent_coef
Dipam Chakraborty's avatar
Dipam Chakraborty committed
244
245
        
        loss = loss / num_accumulate
Dipam Chakraborty's avatar
Dipam Chakraborty committed
246
        vf_loss = vf_loss / num_accumulate
Dipam Chakraborty's avatar
Dipam Chakraborty committed
247
248

        loss.backward()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
249
        vf_loss.backward()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
250
251
252
        if apply_grad:
            self.optimizer.step()
            self.optimizer.zero_grad()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
253
254
255
            if not self.config['single_optimizer']:
                self.value_optimizer.step()
                self.value_optimizer.zero_grad()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
256
257

        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
258
    def aux_train(self):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
259
260
        nbatch_train = self.mem_limited_batch_size 
        retune_epochs = self.config['retune_epochs']
Dipam Chakraborty's avatar
Dipam Chakraborty committed
261
        replay_shape = self.retune_selector.vtarg_replay.shape
Dipam Chakraborty's avatar
Dipam Chakraborty committed
262
        replay_pi = np.empty((*replay_shape, self.retune_selector.ac_space.n), dtype=np.float32)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
263

Dipam Chakraborty's avatar
Dipam Chakraborty committed
264
265
        for nnpi in range(self.retune_selector.n_pi):
            for ne in range(self.retune_selector.nenvs):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
266
                _, replay_pi[nnpi, :, ne] = self.model.vf_pi(self.retune_selector.exp_replay[nnpi, :, ne], 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
267
                                                             ret_numpy=True, no_grad=True, to_torch=True)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
268
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
269
        # Tune vf and pi heads to older predictions with (augmented?) observations
Dipam Chakraborty's avatar
Dipam Chakraborty committed
270
        for ep in range(retune_epochs):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
271
            for slices in self.retune_selector.make_minibatches(replay_pi):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
272
                self.tune_policy(slices[0], self.to_tensor(slices[1]), self.to_tensor(slices[2]))
273
                
274
        self.retunes_completed += 1
Dipam Chakraborty's avatar
Dipam Chakraborty committed
275
276
        self.retune_selector.retune_done()
 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
277
    def tune_policy(self, obs, target_vf, target_pi):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
278
279
        if self.config['augment_buffer']:
            obs_aug = np.empty(obs.shape, obs.dtype)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
280
            aug_idx = np.random.randint(self.config['augment_randint_num'], size=len(obs))
Dipam Chakraborty's avatar
Dipam Chakraborty committed
281
282
283
284
285
286
            obs_aug[aug_idx == 0] = pad_and_random_crop(obs[aug_idx == 0], 64, 10)
            obs_aug[aug_idx == 1] = random_cutout_color(obs[aug_idx == 1], 10, 30)
            obs_aug[aug_idx >= 2] = obs[aug_idx >= 2]
            obs_in = self.to_tensor(obs_aug)
        else:
            obs_in = self.to_tensor(obs)
287
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
288
289
290
291
        if not self.config['aux_phase_mixed_precision']:
            loss, vf_loss = self._aux_calc_loss(obs_in, target_vf, target_pi)
            loss.backward()
            vf_loss.backward()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
292
293
294
295
296
            if not self.config['single_optimizer']:
                self.aux_optimizer.step()
                self.value_optimizer.step()
            else:
                self.optimizer.step()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
297
298
299
300
301
302
303
304
            
        else:
            with autocast():
                loss, vf_loss = self._aux_calc_loss(obs_in, target_vf, target_pi)
            
            self.amp_scaler.scale(loss).backward(retain_graph=True)
            self.amp_scaler.scale(vf_loss).backward()

Dipam Chakraborty's avatar
Dipam Chakraborty committed
305
306
307
308
309
            if not self.config['single_optimizer']:
                self.amp_scaler.step(self.aux_optimizer)
                self.amp_scaler.step(self.value_optimizer)
            else:
                self.amp_scaler.step(self.optimizer)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
310
311
312

            self.amp_scaler.update()
            
Dipam Chakraborty's avatar
Dipam Chakraborty committed
313
314
315
316
317
        if not self.config['single_optimizer']:
            self.aux_optimizer.zero_grad()
            self.value_optimizer.zero_grad()
        else:
            self.optimizer.zero_grad()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
318
319
            
    def _aux_calc_loss(self, obs_in, target_vf, target_pi):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
320
        vpred, pi_logits = self.model.vf_pi(obs_in, ret_numpy=False, no_grad=False, to_torch=False)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
321
322
        aux_vpred = self.model.aux_value_function()
        aux_loss = .5 * torch.mean(torch.pow(aux_vpred - target_vf, 2))
Dipam Chakraborty's avatar
Dipam Chakraborty committed
323

324
325
326
        target_pd = self.make_distr(target_pi)
        pd = self.make_distr(pi_logits)
        pi_loss = td.kl_divergence(target_pd, pd).mean()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
327

Dipam Chakraborty's avatar
Dipam Chakraborty committed
328
329
        loss = pi_loss + aux_loss
        vf_loss = .5 * torch.mean(torch.pow(vpred - target_vf, 2))
Dipam Chakraborty's avatar
Dipam Chakraborty committed
330
331
        
        return loss, vf_loss
Dipam Chakraborty's avatar
Dipam Chakraborty committed
332
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
333
    def best_reward_model_select(self, samples):
334
        self.timesteps_total += len(samples['dones'])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        
        ## Best reward model selection
        eprews = [info['episode']['r'] for info in samples['infos'] if 'episode' in info]
        self.reward_deque.extend(eprews)
        mean_reward = safe_mean(eprews) if len(eprews) >= 100 else safe_mean(self.reward_deque)
        if self.best_reward < mean_reward:
            self.best_reward = mean_reward
            self.best_weights = self.get_weights()["current_weights"]
            self.best_rew_tsteps = self.timesteps_total
           
        if self.timesteps_total > self.target_timesteps or (self.time_elapsed + self.buffer_time) > self.max_time:
            if self.best_weights is not None:
                self.set_model_weights(self.best_weights)
                return True
            
        return False
    
    def update_lr(self):
        if self.config['lr_schedule'] == 'linear':
            self.lr = linear_schedule(initial_val=self.config['lr'],
                                      final_val=self.config['final_lr'],
                                      current_steps=self.timesteps_total,
                                      total_steps=self.target_timesteps)
            
        elif self.config['lr_schedule'] == 'exponential':
            self.lr = 0.997 * self.lr 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
361
362
363
364
365
366
367
368
        
        for g in self.optimizer.param_groups:
            g['lr'] = self.lr
        if self.config['same_lr_everywhere']:
            for g in self.value_optimizer.param_groups:
                g['lr'] = self.lr
            for g in self.aux_optimizer.param_groups:
                g['lr'] = self.lr
Dipam Chakraborty's avatar
Dipam Chakraborty committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

    
    def update_ent_coef(self):
        if self.config['entropy_schedule']:
            self.ent_coef = linear_schedule(initial_val=self.config['entropy_coeff'], 
                                            final_val=self.config['final_entropy_coeff'], 
                                            current_steps=self.timesteps_total, 
                                            total_steps=self.target_timesteps)
    
    def update_gamma(self, samples):
        if self.config['adaptive_gamma']:
            epinfobuf = [info['episode'] for info in samples['infos'] if 'episode' in info]
            self.maxrewep_lenbuf.extend([epinfo['l'] for epinfo in epinfobuf if epinfo['r'] >= self.max_reward])
            sorted_nth = lambda buf, n: np.nan if len(buf) < 100 else sorted(self.maxrewep_lenbuf.copy())[n]
            target_horizon = sorted_nth(self.maxrewep_lenbuf, 80)
            self.gamma = self.adaptive_discount_tuner.update(target_horizon)

        
    def get_custom_state_vars(self):
        return {
            "time_elapsed": self.time_elapsed,
            "timesteps_total": self.timesteps_total,
            "best_weights": self.best_weights,
            "reward_deque": self.reward_deque,
            "batch_end_time": self.batch_end_time,
            "gamma": self.gamma,
            "maxrewep_lenbuf": self.maxrewep_lenbuf,
            "lr": self.lr,
            "ent_coef": self.ent_coef,
            "rewnorm": self.rewnorm,
            "best_rew_tsteps": self.best_rew_tsteps,
            "best_reward": self.best_reward,
            "last_dones": self.last_dones,
402
            "retunes_completed": self.retunes_completed,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
403
404
405
406
407
408
409
410
411
412
        }
    
    def set_custom_state_vars(self, custom_state_vars):
        self.time_elapsed = custom_state_vars["time_elapsed"]
        self.timesteps_total = custom_state_vars["timesteps_total"]
        self.best_weights = custom_state_vars["best_weights"]
        self.reward_deque = custom_state_vars["reward_deque"]
        self.batch_end_time = custom_state_vars["batch_end_time"]
        self.gamma = self.adaptive_discount_tuner.gamma = custom_state_vars["gamma"]
        self.maxrewep_lenbuf = custom_state_vars["maxrewep_lenbuf"]
413
        self.lr = custom_state_vars["lr"]
Dipam Chakraborty's avatar
Dipam Chakraborty committed
414
415
416
417
418
        self.ent_coef = custom_state_vars["ent_coef"]
        self.rewnorm = custom_state_vars["rewnorm"]
        self.best_rew_tsteps = custom_state_vars["best_rew_tsteps"]
        self.best_reward = custom_state_vars["best_reward"]
        self.last_dones = custom_state_vars["last_dones"]
419
        self.retunes_completed = custom_state_vars["retunes_completed"]
Dipam Chakraborty's avatar
Dipam Chakraborty committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
    
    @override(TorchPolicy)
    def get_weights(self):
        weights = {}
        weights["current_weights"] = {
            k: v.cpu().detach().numpy()
            for k, v in self.model.state_dict().items()
        }
        return weights
    
    @override(TorchPolicy)
    def set_weights(self, weights):
        self.set_model_weights(weights["current_weights"])
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
434
    def set_optimizer_state(self, optimizer_state, aux_optimizer_state, value_optimizer_state, amp_scaler_state):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
435
436
437
        optimizer_state = convert_to_torch_tensor(optimizer_state, device=self.device)
        self.optimizer.load_state_dict(optimizer_state)
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
438
439
440
        aux_optimizer_state = convert_to_torch_tensor(aux_optimizer_state, device=self.device)
        self.aux_optimizer.load_state_dict(aux_optimizer_state)
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
441
442
        value_optimizer_state = convert_to_torch_tensor(value_optimizer_state, device=self.device)
        self.value_optimizer.load_state_dict(value_optimizer_state)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
443
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
444
445
446
        amp_scaler_state = convert_to_torch_tensor(amp_scaler_state, device=self.device)
        self.amp_scaler.load_state_dict(amp_scaler_state)
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
447
448
449
    def set_model_weights(self, model_weights):
        model_weights = convert_to_torch_tensor(model_weights, device=self.device)
        self.model.load_state_dict(model_weights)