custom_torch_ppg.py 18.4 KB
Newer Older
Dipam Chakraborty's avatar
Dipam Chakraborty committed
1
2
3
4
5
6
7
8
9
10
11
from ray.rllib.policy.torch_policy import TorchPolicy
import numpy as np
from ray.rllib.utils.torch_ops import convert_to_non_torch_type, convert_to_torch_tensor
from ray.rllib.utils import try_import_torch
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.annotations import override
from collections import deque
from .utils import *
import time

torch, nn = try_import_torch()
12
import torch.distributions as td
Dipam Chakraborty's avatar
Dipam Chakraborty committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

class CustomTorchPolicy(TorchPolicy):
    """Example of a random policy
    If you are using tensorflow/pytorch to build custom policies,
    you might find `build_tf_policy` and `build_torch_policy` to
    be useful.
    Adopted from examples from https://docs.ray.io/en/master/rllib-concepts.html
    """

    def __init__(self, observation_space, action_space, config):
        self.config = config

        self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        dist_class, logit_dim = ModelCatalog.get_action_dist(
            action_space, self.config["model"], framework="torch")
        self.model = ModelCatalog.get_model_v2(
                        obs_space=observation_space,
                        action_space=action_space,
                        num_outputs=logit_dim,
                        model_config=self.config["model"],
                        framework="torch",
                        device=self.device,
                     )

        TorchPolicy.__init__(
            self,
            observation_space=observation_space,
            action_space=action_space,
            config=config,
            model=self.model,
            loss=None,
            action_distribution_class=dist_class,
        )
46

Dipam Chakraborty's avatar
Dipam Chakraborty committed
47
        self.framework = "torch"
Dipam Chakraborty's avatar
Dipam Chakraborty committed
48
49
50
51
52
53
54
55
        aux_params = set(self.model.aux_vf.parameters())
        value_params = set(self.model.value_fc.parameters())
        network_params = set(self.model.parameters())
        aux_optim_params = list(network_params - value_params)
        ppo_optim_params = list(network_params - aux_params - value_params)
        self.optimizer = torch.optim.Adam(ppo_optim_params, lr=5e-4)
        self.aux_optimizer = torch.optim.Adam(aux_optim_params, lr=5e-4)
        self.value_optimizer = torch.optim.Adam(value_params, lr=1e-3)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
56
57
58
59
60
61
62
63
64
65
66
        self.max_reward = self.config['env_config']['return_max']
        self.rewnorm = RewardNormalizer(cliprew=self.max_reward) ## TODO: Might need to go to custom state
        self.reward_deque = deque(maxlen=100)
        self.best_reward = -np.inf
        self.best_weights = None
        self.time_elapsed = 0
        self.batch_end_time = time.time()
        self.timesteps_total = 0
        self.best_rew_tsteps = 0
        
        nw = self.config['num_workers'] if self.config['num_workers'] > 0 else 1
Dipam Chakraborty's avatar
Dipam Chakraborty committed
67
68
69
70
        nenvs = nw * self.config['num_envs_per_worker']
        nsteps = self.config['rollout_fragment_length']
        n_pi = self.config['n_pi']
        self.nbatch = nenvs * nsteps
Dipam Chakraborty's avatar
Dipam Chakraborty committed
71
72
73
74
75
76
77
        self.actual_batch_size = self.nbatch // self.config['updates_per_batch']
        self.accumulate_train_batches = int(np.ceil( self.actual_batch_size / self.config['max_minibatch_size'] ))
        self.mem_limited_batch_size = self.actual_batch_size // self.accumulate_train_batches
        if self.nbatch % self.actual_batch_size != 0 or self.nbatch % self.mem_limited_batch_size != 0:
            print("#################################################")
            print("WARNING: MEMORY LIMITED BATCHING NOT SET PROPERLY")
            print("#################################################")
Dipam Chakraborty's avatar
Dipam Chakraborty committed
78
79
        replay_shape = (n_pi, nsteps, nenvs)
        self.retune_selector = RetuneSelector(nenvs, observation_space, action_space, replay_shape,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
80
81
                                              skips = self.config['skips'], 
                                              n_pi = n_pi,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
82
83
                                              num_retunes = self.config['num_retunes'],
                                              flat_buffer = self.config['flattened_buffer'])
84
        self.save_success = 0
Dipam Chakraborty's avatar
Dipam Chakraborty committed
85
86
        self.target_timesteps = 8_000_000
        self.buffer_time = 20 # TODO: Could try to do a median or mean time step check instead
87
        self.max_time = 100000000
Dipam Chakraborty's avatar
Dipam Chakraborty committed
88
89
90
91
92
93
94
95
        self.maxrewep_lenbuf = deque(maxlen=100)
        self.gamma = self.config['gamma']
        self.adaptive_discount_tuner = AdaptiveDiscountTuner(self.gamma, momentum=0.98, eplenmult=3)
        
        self.lr = config['lr']
        self.ent_coef = config['entropy_coeff']
        
        self.last_dones = np.zeros((nw * self.config['num_envs_per_worker'],))
96
97
#         self.make_distr = dist_build(action_space)
        self.make_distr = dist_class
98
        self.retunes_completed = 0
Dipam Chakraborty's avatar
Dipam Chakraborty committed
99
100
101
        
    def to_tensor(self, arr):
        return torch.from_numpy(arr).to(self.device)
102
103
104
105
    
    @override(TorchPolicy)
    def extra_action_out(self, input_dict, state_batches, model, action_dist):
        return {'values': model._value.tolist()}
Dipam Chakraborty's avatar
Dipam Chakraborty committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        
    @override(TorchPolicy)
    def learn_on_batch(self, samples):
        """Fused compute gradients and apply gradients call.
        Either this or the combination of compute/apply grads must be
        implemented by subclasses.
        Returns:
            grad_info: dictionary of extra metadata from compute_gradients().
        Examples:
            >>> batch = ev.sample()
            >>> ev.learn_on_batch(samples)
        Reference: https://github.com/ray-project/ray/blob/master/rllib/policy/policy.py#L279-L316
        """
        ## Config data values
        nbatch = self.nbatch
        nbatch_train = self.mem_limited_batch_size 
        gamma, lam = self.gamma, self.config['lambda']
        nsteps = self.config['rollout_fragment_length']
        nenvs = nbatch//nsteps
        ts = (nenvs, nsteps)
        mb_dones = unroll(samples['dones'], ts)
        
        ## Reward Normalization - No reward norm works well for many envs
        if self.config['standardize_rewards']:
            mb_origrewards = unroll(samples['rewards'], ts)
            mb_rewards =  np.zeros_like(mb_origrewards)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
132
            mb_rewards[0] = self.rewnorm.normalize(mb_origrewards[0], self.last_dones, self.config["reset_returns"])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
133
134
135
136
137
            for ii in range(1, nsteps):
                mb_rewards[ii] = self.rewnorm.normalize(mb_origrewards[ii], mb_dones[ii-1])
            self.last_dones = mb_dones[-1]
        else:
            mb_rewards = unroll(samples['rewards'], ts)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
138
       
139
        # Weird hack that helps in many envs (Yes keep it after reward normalization)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
140
141
142
        rew_scale = self.config["scale_reward"]
        if rew_scale != 1.0:
            mb_rewards *= rew_scale
Dipam Chakraborty's avatar
Dipam Chakraborty committed
143
144
145
146
147
148
149
150
151
152
153
        
        should_skip_train_step = self.best_reward_model_select(samples)
        if should_skip_train_step:
            self.update_batch_time()
            return {} # Not doing last optimization step - This is intentional due to noisy gradients
          
        obs = samples['obs']

        ## Value prediction
        next_obs = unroll(samples['new_obs'], ts)[-1]
        last_values, _ = self.model.vf_pi(next_obs, ret_numpy=True, no_grad=True, to_torch=True)
154
        values = samples['values']
Dipam Chakraborty's avatar
Dipam Chakraborty committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        
        ## GAE
        mb_values = unroll(values, ts)
        mb_returns = np.zeros_like(mb_rewards)
        mb_advs = np.zeros_like(mb_rewards)
        lastgaelam = 0
        for t in reversed(range(nsteps)):
            if t == nsteps - 1:
                nextvalues = last_values
            else:
                nextvalues = mb_values[t+1]
            nextnonterminal = 1.0 - mb_dones[t]
            delta = mb_rewards[t] + gamma * nextvalues * nextnonterminal - mb_values[t]
            mb_advs[t] = lastgaelam = delta + gamma * lam * nextnonterminal * lastgaelam
        mb_returns = mb_advs + mb_values
        
        ## Data from config
        cliprange, vfcliprange = self.config['clip_param'], self.config['vf_clip_param']
        lrnow = self.lr
        max_grad_norm = self.config['grad_clip']
        ent_coef, vf_coef = self.ent_coef, self.config['vf_loss_coeff']
        
177
        logp_actions = samples['action_logp'] ## np.isclose seems to be True always, otherwise compute again if needed
Dipam Chakraborty's avatar
Dipam Chakraborty committed
178
179
180
181
        noptepochs = self.config['num_sgd_iter']
        actions = samples['actions']
        returns = roll(mb_returns)
        
182
183
184
        advs = returns - values
        normalized_advs = (advs - np.mean(advs)) / (np.std(advs) + 1e-8) 
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
185
186
187
188
189
190
191
192
        ## Train multiple epochs
        optim_count = 0
        inds = np.arange(nbatch)
        for _ in range(noptepochs):
            np.random.shuffle(inds)
            for start in range(0, nbatch, nbatch_train):
                end = start + nbatch_train
                mbinds = inds[start:end]
193
                slices = (self.to_tensor(arr[mbinds]) for arr in (obs, returns, actions, values, logp_actions, normalized_advs))
Dipam Chakraborty's avatar
Dipam Chakraborty committed
194
195
196
197
198
                optim_count += 1
                apply_grad = (optim_count % self.accumulate_train_batches) == 0
                self._batch_train(apply_grad, self.accumulate_train_batches,
                                  lrnow, cliprange, vfcliprange, max_grad_norm, ent_coef, vf_coef, *slices)

Dipam Chakraborty's avatar
Dipam Chakraborty committed
199
        ## Distill with aux head
Dipam Chakraborty's avatar
Dipam Chakraborty committed
200
        should_retune = self.retune_selector.update(unroll(obs, ts), mb_returns)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
201
202
203
        if should_retune:
            self.aux_train()
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        self.update_gamma(samples)
        self.update_lr()
        self.update_ent_coef()
            
        self.update_batch_time()
        return {}
    
    def update_batch_time(self):
        self.time_elapsed += time.time() - self.batch_end_time
        self.batch_end_time = time.time()
        
    def _batch_train(self, apply_grad, num_accumulate, 
                     lr, cliprange, vfcliprange, max_grad_norm,
                     ent_coef, vf_coef,
218
                     obs, returns, actions, values, logp_actions_old, advs):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
219
220
221
222
        
        for g in self.optimizer.param_groups:
            g['lr'] = lr
        vpred, pi_logits = self.model.vf_pi(obs, ret_numpy=False, no_grad=False, to_torch=False)
223
        pd = self.make_distr(pi_logits)
224
        logp_actions = pd.logp(actions[...,None]).squeeze(1)
225
        entropy = torch.mean(pd.entropy())
Dipam Chakraborty's avatar
Dipam Chakraborty committed
226

Dipam Chakraborty's avatar
Dipam Chakraborty committed
227
        vf_loss = .5 * torch.mean(torch.pow((vpred - returns), 2)) * vf_coef
Dipam Chakraborty's avatar
Dipam Chakraborty committed
228

229
        ratio = torch.exp(logp_actions - logp_actions_old)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
230
231
232
233
        pg_losses1 = -advs * ratio
        pg_losses2 = -advs * torch.clamp(ratio, 1-cliprange, 1+cliprange)
        pg_loss = torch.mean(torch.max(pg_losses1, pg_losses2))

Dipam Chakraborty's avatar
Dipam Chakraborty committed
234
        loss = pg_loss - entropy * ent_coef
Dipam Chakraborty's avatar
Dipam Chakraborty committed
235
236
        
        loss = loss / num_accumulate
Dipam Chakraborty's avatar
Dipam Chakraborty committed
237
        vf_loss = vf_loss / num_accumulate
Dipam Chakraborty's avatar
Dipam Chakraborty committed
238
239

        loss.backward()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
240
        vf_loss.backward()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
241
242
        if apply_grad:
            self.optimizer.step()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
243
            self.value_optimizer.step()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
244
            self.optimizer.zero_grad()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
245
            self.value_optimizer.zero_grad()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
246
247

        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
248
249
    def aux_train(self):
        for g in self.aux_optimizer.param_groups:
Dipam Chakraborty's avatar
Dipam Chakraborty committed
250
            g['lr'] = self.config['aux_lr']
Dipam Chakraborty's avatar
Dipam Chakraborty committed
251
252
        nbatch_train = self.mem_limited_batch_size 
        retune_epochs = self.config['retune_epochs']
Dipam Chakraborty's avatar
Dipam Chakraborty committed
253
        replay_shape = self.retune_selector.vtarg_replay.shape
Dipam Chakraborty's avatar
Dipam Chakraborty committed
254
        replay_pi = np.empty((*replay_shape, self.retune_selector.ac_space.n), dtype=np.float32)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
255

Dipam Chakraborty's avatar
Dipam Chakraborty committed
256
257
        for nnpi in range(self.retune_selector.n_pi):
            for ne in range(self.retune_selector.nenvs):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
258
                _, replay_pi[nnpi, :, ne] = self.model.vf_pi(self.retune_selector.exp_replay[nnpi, :, ne], 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
259
                                                             ret_numpy=True, no_grad=True, to_torch=True)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
260
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
261
        # Tune vf and pi heads to older predictions with (augmented?) observations
Dipam Chakraborty's avatar
Dipam Chakraborty committed
262
        for ep in range(retune_epochs):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
263
            for slices in self.retune_selector.make_minibatches(replay_pi):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
264
                self.tune_policy(slices[0], self.to_tensor(slices[1]), self.to_tensor(slices[2]))
265
                
266
        self.retunes_completed += 1
Dipam Chakraborty's avatar
Dipam Chakraborty committed
267
268
        self.retune_selector.retune_done()
 
Dipam Chakraborty's avatar
Dipam Chakraborty committed
269
    def tune_policy(self, obs, target_vf, target_pi):
Dipam Chakraborty's avatar
Dipam Chakraborty committed
270
271
        if self.config['augment_buffer']:
            obs_aug = np.empty(obs.shape, obs.dtype)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
272
            aug_idx = np.random.randint(self.config['augment_randint_num'], size=len(obs))
Dipam Chakraborty's avatar
Dipam Chakraborty committed
273
274
275
276
277
278
            obs_aug[aug_idx == 0] = pad_and_random_crop(obs[aug_idx == 0], 64, 10)
            obs_aug[aug_idx == 1] = random_cutout_color(obs[aug_idx == 1], 10, 30)
            obs_aug[aug_idx >= 2] = obs[aug_idx >= 2]
            obs_in = self.to_tensor(obs_aug)
        else:
            obs_in = self.to_tensor(obs)
279
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
280
        vpred, pi_logits = self.model.vf_pi(obs_in, ret_numpy=False, no_grad=False, to_torch=False)
Dipam Chakraborty's avatar
Dipam Chakraborty committed
281
282
        aux_vpred = self.model.aux_value_function()
        aux_loss = .5 * torch.mean(torch.pow(aux_vpred - target_vf, 2))
Dipam Chakraborty's avatar
Dipam Chakraborty committed
283
        
284
285
286
287
        target_pd = self.make_distr(target_pi)
        pd = self.make_distr(pi_logits)
        pi_loss = td.kl_divergence(target_pd, pd).mean()
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
288
        loss = pi_loss + aux_loss
Dipam Chakraborty's avatar
Dipam Chakraborty committed
289
290
        
        loss.backward()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
291
292
        self.aux_optimizer.step()
        self.aux_optimizer.zero_grad()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
293
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
294
295
296
297
298
299
        vf_loss = .5 * torch.mean(torch.pow(vpred - target_vf, 2))

        vf_loss.backward()
        self.value_optimizer.step()
        self.value_optimizer.zero_grad()
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
300
    def best_reward_model_select(self, samples):
301
        self.timesteps_total += len(samples['dones'])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
        
        ## Best reward model selection
        eprews = [info['episode']['r'] for info in samples['infos'] if 'episode' in info]
        self.reward_deque.extend(eprews)
        mean_reward = safe_mean(eprews) if len(eprews) >= 100 else safe_mean(self.reward_deque)
        if self.best_reward < mean_reward:
            self.best_reward = mean_reward
            self.best_weights = self.get_weights()["current_weights"]
            self.best_rew_tsteps = self.timesteps_total
           
        if self.timesteps_total > self.target_timesteps or (self.time_elapsed + self.buffer_time) > self.max_time:
            if self.best_weights is not None:
                self.set_model_weights(self.best_weights)
                return True
            
        return False
    
    def update_lr(self):
        if self.config['lr_schedule'] == 'linear':
            self.lr = linear_schedule(initial_val=self.config['lr'],
                                      final_val=self.config['final_lr'],
                                      current_steps=self.timesteps_total,
                                      total_steps=self.target_timesteps)
            
        elif self.config['lr_schedule'] == 'exponential':
            self.lr = 0.997 * self.lr 

    
    def update_ent_coef(self):
        if self.config['entropy_schedule']:
            self.ent_coef = linear_schedule(initial_val=self.config['entropy_coeff'], 
                                            final_val=self.config['final_entropy_coeff'], 
                                            current_steps=self.timesteps_total, 
                                            total_steps=self.target_timesteps)
    
    def update_gamma(self, samples):
        if self.config['adaptive_gamma']:
            epinfobuf = [info['episode'] for info in samples['infos'] if 'episode' in info]
            self.maxrewep_lenbuf.extend([epinfo['l'] for epinfo in epinfobuf if epinfo['r'] >= self.max_reward])
            sorted_nth = lambda buf, n: np.nan if len(buf) < 100 else sorted(self.maxrewep_lenbuf.copy())[n]
            target_horizon = sorted_nth(self.maxrewep_lenbuf, 80)
            self.gamma = self.adaptive_discount_tuner.update(target_horizon)

        
    def get_custom_state_vars(self):
        return {
            "time_elapsed": self.time_elapsed,
            "timesteps_total": self.timesteps_total,
            "best_weights": self.best_weights,
            "reward_deque": self.reward_deque,
            "batch_end_time": self.batch_end_time,
            "gamma": self.gamma,
            "maxrewep_lenbuf": self.maxrewep_lenbuf,
            "lr": self.lr,
            "ent_coef": self.ent_coef,
            "rewnorm": self.rewnorm,
            "best_rew_tsteps": self.best_rew_tsteps,
            "best_reward": self.best_reward,
            "last_dones": self.last_dones,
361
            "retunes_completed": self.retunes_completed,
Dipam Chakraborty's avatar
Dipam Chakraborty committed
362
363
364
365
366
367
368
369
370
371
        }
    
    def set_custom_state_vars(self, custom_state_vars):
        self.time_elapsed = custom_state_vars["time_elapsed"]
        self.timesteps_total = custom_state_vars["timesteps_total"]
        self.best_weights = custom_state_vars["best_weights"]
        self.reward_deque = custom_state_vars["reward_deque"]
        self.batch_end_time = custom_state_vars["batch_end_time"]
        self.gamma = self.adaptive_discount_tuner.gamma = custom_state_vars["gamma"]
        self.maxrewep_lenbuf = custom_state_vars["maxrewep_lenbuf"]
372
        self.lr = custom_state_vars["lr"]
Dipam Chakraborty's avatar
Dipam Chakraborty committed
373
374
375
376
377
        self.ent_coef = custom_state_vars["ent_coef"]
        self.rewnorm = custom_state_vars["rewnorm"]
        self.best_rew_tsteps = custom_state_vars["best_rew_tsteps"]
        self.best_reward = custom_state_vars["best_reward"]
        self.last_dones = custom_state_vars["last_dones"]
378
        self.retunes_completed = custom_state_vars["retunes_completed"]
Dipam Chakraborty's avatar
Dipam Chakraborty committed
379
380
381
382
383
384
385
386
    
    @override(TorchPolicy)
    def get_weights(self):
        weights = {}
        weights["current_weights"] = {
            k: v.cpu().detach().numpy()
            for k, v in self.model.state_dict().items()
        }
387
388
389
390
391
392
393
394
395
#         weights["optimizer_state"] = {
#             k: v
#             for k, v in self.optimizer.state_dict().items()
#         }
#         weights["aux_optimizer_state"] = {
#             k: v
#             for k, v in self.aux_optimizer.state_dict().items()
#         }
#         weights["custom_state_vars"] = self.get_custom_state_vars()
Dipam Chakraborty's avatar
Dipam Chakraborty committed
396
397
398
399
400
401
        return weights
        
    
    @override(TorchPolicy)
    def set_weights(self, weights):
        self.set_model_weights(weights["current_weights"])
402
403
404
#         self.set_optimizer_state(weights["optimizer_state"])
#         self.set_aux_optimizer_state(weights["aux_optimizer_state"])
#         self.set_custom_state_vars(weights["custom_state_vars"])
Dipam Chakraborty's avatar
Dipam Chakraborty committed
405
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
406
407
408
409
    def set_aux_optimizer_state(self, aux_optimizer_state):
        aux_optimizer_state = convert_to_torch_tensor(aux_optimizer_state, device=self.device)
        self.aux_optimizer.load_state_dict(aux_optimizer_state)
        
Dipam Chakraborty's avatar
Dipam Chakraborty committed
410
411
412
413
414
415
416
    def set_optimizer_state(self, optimizer_state):
        optimizer_state = convert_to_torch_tensor(optimizer_state, device=self.device)
        self.optimizer.load_state_dict(optimizer_state)
        
    def set_model_weights(self, model_weights):
        model_weights = convert_to_torch_tensor(model_weights, device=self.device)
        self.model.load_state_dict(model_weights)