From 852f9e8dedf6b6293f5dca8e0f0dfb910a87b68c Mon Sep 17 00:00:00 2001
From: xw_g <a2576349414@gmail.com>
Date: Thu, 9 May 2024 12:15:20 +0800
Subject: [PATCH] rag v0.2

---
 models/dummy_model.py                         |   89 +-
 models/index.ivf                              |    2 +-
 .../config_sentence_transformers.json         |    9 -
 .../model.safetensors                         |    3 -
 .../1_Pooling/config.json                     |    0
 .../README.md                                 | 3682 +++++++----------
 .../config.json                               |    2 +-
 .../config_sentence_transformers.json         |    9 +
 .../model.safetensors                         |    3 +
 .../modules.json                              |    0
 .../sentence_bert_config.json                 |    0
 .../sentencepiece.bpe.model                   |  Bin
 .../special_tokens_map.json                   |    0
 .../tokenizer.json                            |    0
 .../tokenizer_config.json                     |    1 +
 15 files changed, 1608 insertions(+), 2192 deletions(-)
 delete mode 100644 models/intfloat-multilingual-e5-large/config_sentence_transformers.json
 delete mode 100644 models/intfloat-multilingual-e5-large/model.safetensors
 rename models/{intfloat-multilingual-e5-large => multilingual-e5-large-instruct}/1_Pooling/config.json (100%)
 rename models/{intfloat-multilingual-e5-large => multilingual-e5-large-instruct}/README.md (63%)
 rename models/{intfloat-multilingual-e5-large => multilingual-e5-large-instruct}/config.json (91%)
 create mode 100644 models/multilingual-e5-large-instruct/config_sentence_transformers.json
 create mode 100644 models/multilingual-e5-large-instruct/model.safetensors
 rename models/{intfloat-multilingual-e5-large => multilingual-e5-large-instruct}/modules.json (100%)
 rename models/{intfloat-multilingual-e5-large => multilingual-e5-large-instruct}/sentence_bert_config.json (100%)
 rename models/{intfloat-multilingual-e5-large => multilingual-e5-large-instruct}/sentencepiece.bpe.model (100%)
 rename models/{intfloat-multilingual-e5-large => multilingual-e5-large-instruct}/special_tokens_map.json (100%)
 rename models/{intfloat-multilingual-e5-large => multilingual-e5-large-instruct}/tokenizer.json (100%)
 rename models/{intfloat-multilingual-e5-large => multilingual-e5-large-instruct}/tokenizer_config.json (97%)

diff --git a/models/dummy_model.py b/models/dummy_model.py
index 00243d7..a3f15b2 100644
--- a/models/dummy_model.py
+++ b/models/dummy_model.py
@@ -76,19 +76,19 @@ class llama3_8b_FewShot(ShopBenchBaseModel):
             # self.tokenizer.convert_tokens_to_ids("\\n"),
         ]
 
-    def average_pool(self,last_hidden_states: Tensor,
-                    attention_mask: Tensor) -> Tensor:
-        last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
-        return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
-
+    def get_detailed_instruct(self, task_description: str, query: str) -> str:
+        return f'Instruct: {task_description}\nQuery: {query}'
+        
     def build_vector_database(self, ):
+        self.embed_model = SentenceTransformer("./models/multilingual-e5-large-instruct")
+
         # few shot preprocess
         dim = 1024  # Embedding dimension for intfloat/multilingual-e5-large
         nlist = 1024 # Number of cluster centroids
         quantizer = faiss.IndexFlatIP(dim)
         self.index = faiss.IndexIVFFlat(quantizer, dim, nlist, faiss.METRIC_INNER_PRODUCT)
         self.index.nprobe = 3
-        self.embed_model = SentenceTransformer("./models/intfloat-multilingual-e5-large")
+
         self.few_shot_example_text = []
         self.fewshot_embeddings = []
         with open('./models/sample_example1.jsonl','r',encoding='utf8') as f:
@@ -100,36 +100,55 @@ class llama3_8b_FewShot(ShopBenchBaseModel):
                 else:
                     passage = t_data['instruction'] + str(t_data['output']) + '\n'
                 passage = passage.replace('\\n','\n')
-                self.few_shot_example_text.append('passage: ' + passage)
+                self.few_shot_example_text.append(passage)
+
+
+
+        # preprocess retriev index and save trained index
+        # self.fewshot_embeddings = self.embed_model.encode(self.few_shot_example_text, batch_size=128, show_progress_bar=True)
+        # print(f'process few shot example embedding done! {len(self.few_shot_example_text)}')
+        # self.index.train(self.fewshot_embeddings.astype(np.float32))
+        # self.index.add(self.fewshot_embeddings.astype(np.float32))
+        # faiss.write_index(self.index, "./models/index.ivf")
+
 
         self.index = faiss.read_index("./models/index.ivf")
         self.metadata = [{"fewshot_examaple": fewshot_examaple} for fewshot_examaple in self.few_shot_example_text]
 
 
     def predict(self, prompt: str, is_multiple_choice: bool) -> str:
-        query_text = 'query: ' + prompt
-        query_embed = self.embed_model.encode([query_text])[0]
+        task_description = "Given a online shopping user query, retrieve relevant Question-Answer that similar to the query."
+        query_text = ' ' + prompt
+        query_embed = self.embed_model.encode([self.get_detailed_instruct(task_description, query_text)])[0]
         topk = 3
         scores, indices = self.index.search(np.array([query_embed]).astype(np.float32), topk)
 
         # Retrieve and process results
-        
-        if not is_multiple_choice:
-            exmaple_prompt = []
-            for score, idx in zip(scores[0], indices[0]):
-                if score>=0.85:
-                    fewshot_examaple = self.metadata[idx]["fewshot_examaple"]
-                    exmaple_prompt.append(fewshot_examaple[9:])
-            if len(exmaple_prompt) > 0:
-                prompt_example = self.system_prompt + 'Here are some similar questions and answers you can refer to:\n' 
-                for i in exmaple_prompt:
-                    prompt_example += i+'\n'
-                prompt_example += '\nQuestion:' + prompt
-            else:
-                prompt_example = self.system_prompt + '\n' + prompt
-            print(prompt_example)
+        exmaple_prompt = []
+        for score, idx in zip(scores[0], indices[0]):
+            print(f'score:{score} meta data:{self.metadata[idx]["fewshot_examaple"]}')
+            if score>=0.895:
+                fewshot_examaple = self.metadata[idx]["fewshot_examaple"]
+                exmaple_prompt.append(fewshot_examaple)
+        if len(exmaple_prompt) > 0:
+            prompt_example = self.system_prompt + 'Here are some similar questions and answers you can refer to:\n' 
+            for i in exmaple_prompt:
+                prompt_example += i+'\n'
+            prompt_example += 'Now answer the Question:' + prompt
+        else:
+            prompt_example = self.system_prompt + '\nNow answer the Question:' + prompt
+        print(prompt_example)
 
 
+        if is_multiple_choice:
+            # todo add retrive few shot example
+            inputs = self.tokenizer.encode(prompt_example, add_special_tokens=False, return_tensors="pt")
+            inputs = inputs.cuda()
+            if is_multiple_choice:
+                generate_ids = self.model.generate(inputs, max_new_tokens=1, temperature=0.1, eos_token_id=self.terminators)
+            result = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
+            generation = result[len(prompt_example):]
+        else:
             messages = [
                 {"role": "system", "content": prompt_example[:len(self.system_prompt)]},
                 {"role": "user", "content": prompt_example[len(self.system_prompt):]},
@@ -141,22 +160,12 @@ class llama3_8b_FewShot(ShopBenchBaseModel):
             ).to(self.model.device)
             outputs = self.model.generate(
                 input_ids,
-                max_new_tokens=138,
+                max_new_tokens=256,
                 eos_token_id=self.terminators,
                 do_sample=False,
             )
-            response = outputs[0][input_ids.shape[-1]:]
-            response = self.tokenizer.decode(response, skip_special_tokens=True)
-            print(response)
-            return response
-        else:
-            prompt_example = self.system_prompt + '\n' + prompt
-            print(prompt_example)
-            inputs = self.tokenizer.encode(prompt_example, add_special_tokens=False, return_tensors="pt")
-            inputs = inputs.cuda()
-            if is_multiple_choice:
-                generate_ids = self.model.generate(inputs, max_new_tokens=1, temperature=0.1, eos_token_id=self.terminators)
-            result = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
-            generation = result[len(prompt_example):]
-            print(f'model generate answer : {generation}')
-            return generation
\ No newline at end of file
+            generation = outputs[0][input_ids.shape[-1]:]
+            generation = self.tokenizer.decode(generation, skip_special_tokens=True)
+
+        print(f'model generate answer : {generation}')
+        return generation
\ No newline at end of file
diff --git a/models/index.ivf b/models/index.ivf
index dda02e5..14ee93d 100644
--- a/models/index.ivf
+++ b/models/index.ivf
@@ -1,3 +1,3 @@
 version https://git-lfs.github.com/spec/v1
-oid sha256:84468e3f1364e8902cfa4426a11eea174eec7b86a4f33cd0ff0bad233be7c5ee
+oid sha256:c4638cb8d13dc8c9cd52a06f2a3c4ede4e18521d451a3dd7bfe16ff577d997ed
 size 130950571
diff --git a/models/intfloat-multilingual-e5-large/config_sentence_transformers.json b/models/intfloat-multilingual-e5-large/config_sentence_transformers.json
deleted file mode 100644
index 2740653..0000000
--- a/models/intfloat-multilingual-e5-large/config_sentence_transformers.json
+++ /dev/null
@@ -1,9 +0,0 @@
-{
-  "__version__": {
-    "sentence_transformers": "2.7.0",
-    "transformers": "4.40.1",
-    "pytorch": "2.1.1+cu118"
-  },
-  "prompts": {},
-  "default_prompt_name": null
-}
\ No newline at end of file
diff --git a/models/intfloat-multilingual-e5-large/model.safetensors b/models/intfloat-multilingual-e5-large/model.safetensors
deleted file mode 100644
index 38b5448..0000000
--- a/models/intfloat-multilingual-e5-large/model.safetensors
+++ /dev/null
@@ -1,3 +0,0 @@
-version https://git-lfs.github.com/spec/v1
-oid sha256:b97ef8b3fe70ff51008184da99b70a0df37ed377bb538a224f3951f2ed388234
-size 2239607176
diff --git a/models/intfloat-multilingual-e5-large/1_Pooling/config.json b/models/multilingual-e5-large-instruct/1_Pooling/config.json
similarity index 100%
rename from models/intfloat-multilingual-e5-large/1_Pooling/config.json
rename to models/multilingual-e5-large-instruct/1_Pooling/config.json
diff --git a/models/intfloat-multilingual-e5-large/README.md b/models/multilingual-e5-large-instruct/README.md
similarity index 63%
rename from models/intfloat-multilingual-e5-large/README.md
rename to models/multilingual-e5-large-instruct/README.md
index bef8788..5738062 100644
--- a/models/intfloat-multilingual-e5-large/README.md
+++ b/models/multilingual-e5-large-instruct/README.md
@@ -1,12 +1,10 @@
 ---
 tags:
 - mteb
-- Sentence Transformers
-- sentence-similarity
-- feature-extraction
 - sentence-transformers
+- transformers
 model-index:
-- name: multilingual-e5-large
+- name: multilingual-e5-large-instruct
   results:
   - task:
       type: Classification
@@ -18,11 +16,11 @@ model-index:
       revision: e8379541af4e31359cca9fbcf4b00f2671dba205
     metrics:
     - type: accuracy
-      value: 79.05970149253731
+      value: 76.23880597014924
     - type: ap
-      value: 43.486574390835635
+      value: 39.07351965022687
     - type: f1
-      value: 73.32700092140148
+      value: 70.04836733862683
   - task:
       type: Classification
     dataset:
@@ -33,11 +31,11 @@ model-index:
       revision: e8379541af4e31359cca9fbcf4b00f2671dba205
     metrics:
     - type: accuracy
-      value: 71.22055674518201
+      value: 66.71306209850107
     - type: ap
-      value: 81.55756710830498
+      value: 79.01499914759529
     - type: f1
-      value: 69.28271787752661
+      value: 64.81951817560703
   - task:
       type: Classification
     dataset:
@@ -48,11 +46,11 @@ model-index:
       revision: e8379541af4e31359cca9fbcf4b00f2671dba205
     metrics:
     - type: accuracy
-      value: 80.41979010494754
+      value: 73.85307346326837
     - type: ap
-      value: 29.34879922376344
+      value: 22.447519885878737
     - type: f1
-      value: 67.62475449011278
+      value: 61.0162730745633
   - task:
       type: Classification
     dataset:
@@ -63,11 +61,11 @@ model-index:
       revision: e8379541af4e31359cca9fbcf4b00f2671dba205
     metrics:
     - type: accuracy
-      value: 77.8372591006424
+      value: 76.04925053533191
     - type: ap
-      value: 26.557560591210738
+      value: 23.44983217128922
     - type: f1
-      value: 64.96619417368707
+      value: 62.5723230907759
   - task:
       type: Classification
     dataset:
@@ -78,11 +76,11 @@ model-index:
       revision: e2d317d38cd51312af73b3d32a06d1a08b442046
     metrics:
     - type: accuracy
-      value: 93.489875
+      value: 96.28742500000001
     - type: ap
-      value: 90.98758636917603
+      value: 94.8449918887462
     - type: f1
-      value: 93.48554819717332
+      value: 96.28680923610432
   - task:
       type: Classification
     dataset:
@@ -93,9 +91,9 @@ model-index:
       revision: 1399c76144fd37290681b995c656ef9b2e06e26d
     metrics:
     - type: accuracy
-      value: 47.564
+      value: 56.716
     - type: f1
-      value: 46.75122173518047
+      value: 55.76510398266401
   - task:
       type: Classification
     dataset:
@@ -106,9 +104,9 @@ model-index:
       revision: 1399c76144fd37290681b995c656ef9b2e06e26d
     metrics:
     - type: accuracy
-      value: 45.400000000000006
+      value: 52.99999999999999
     - type: f1
-      value: 44.17195682400632
+      value: 52.00829994765178
   - task:
       type: Classification
     dataset:
@@ -119,9 +117,9 @@ model-index:
       revision: 1399c76144fd37290681b995c656ef9b2e06e26d
     metrics:
     - type: accuracy
-      value: 43.068
+      value: 48.806000000000004
     - type: f1
-      value: 42.38155696855596
+      value: 48.082345914983634
   - task:
       type: Classification
     dataset:
@@ -132,9 +130,9 @@ model-index:
       revision: 1399c76144fd37290681b995c656ef9b2e06e26d
     metrics:
     - type: accuracy
-      value: 41.89
+      value: 48.507999999999996
     - type: f1
-      value: 40.84407321682663
+      value: 47.68752844642045
   - task:
       type: Classification
     dataset:
@@ -145,9 +143,9 @@ model-index:
       revision: 1399c76144fd37290681b995c656ef9b2e06e26d
     metrics:
     - type: accuracy
-      value: 40.120000000000005
+      value: 47.709999999999994
     - type: f1
-      value: 39.522976223819114
+      value: 47.05870376637181
   - task:
       type: Classification
     dataset:
@@ -158,9 +156,9 @@ model-index:
       revision: 1399c76144fd37290681b995c656ef9b2e06e26d
     metrics:
     - type: accuracy
-      value: 38.832
+      value: 44.662000000000006
     - type: f1
-      value: 38.0392533394713
+      value: 43.42371965372771
   - task:
       type: Retrieval
     dataset:
@@ -171,65 +169,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 30.725
+      value: 31.721
     - type: map_at_10
-      value: 46.055
+      value: 49.221
     - type: map_at_100
-      value: 46.900999999999996
+      value: 49.884
     - type: map_at_1000
-      value: 46.911
+      value: 49.888
     - type: map_at_3
-      value: 41.548
+      value: 44.31
     - type: map_at_5
-      value: 44.297
+      value: 47.276
     - type: mrr_at_1
-      value: 31.152
+      value: 32.432
     - type: mrr_at_10
-      value: 46.231
+      value: 49.5
     - type: mrr_at_100
-      value: 47.07
+      value: 50.163000000000004
     - type: mrr_at_1000
-      value: 47.08
+      value: 50.166
     - type: mrr_at_3
-      value: 41.738
+      value: 44.618
     - type: mrr_at_5
-      value: 44.468999999999994
+      value: 47.541
     - type: ndcg_at_1
-      value: 30.725
+      value: 31.721
     - type: ndcg_at_10
-      value: 54.379999999999995
+      value: 58.384
     - type: ndcg_at_100
-      value: 58.138
+      value: 61.111000000000004
     - type: ndcg_at_1000
-      value: 58.389
+      value: 61.187999999999995
     - type: ndcg_at_3
-      value: 45.156
+      value: 48.386
     - type: ndcg_at_5
-      value: 50.123
+      value: 53.708999999999996
     - type: precision_at_1
-      value: 30.725
+      value: 31.721
     - type: precision_at_10
-      value: 8.087
+      value: 8.741
     - type: precision_at_100
-      value: 0.9769999999999999
+      value: 0.991
     - type: precision_at_1000
       value: 0.1
     - type: precision_at_3
-      value: 18.54
+      value: 20.057
     - type: precision_at_5
-      value: 13.542000000000002
+      value: 14.609
     - type: recall_at_1
-      value: 30.725
+      value: 31.721
     - type: recall_at_10
-      value: 80.868
+      value: 87.411
     - type: recall_at_100
-      value: 97.653
+      value: 99.075
     - type: recall_at_1000
-      value: 99.57300000000001
+      value: 99.644
     - type: recall_at_3
-      value: 55.619
+      value: 60.171
     - type: recall_at_5
-      value: 67.71000000000001
+      value: 73.044
   - task:
       type: Clustering
     dataset:
@@ -240,7 +238,7 @@ model-index:
       revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
     metrics:
     - type: v_measure
-      value: 44.30960650674069
+      value: 46.40419580759799
   - task:
       type: Clustering
     dataset:
@@ -251,7 +249,7 @@ model-index:
       revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
     metrics:
     - type: v_measure
-      value: 38.427074197498996
+      value: 40.48593255007969
   - task:
       type: Reranking
     dataset:
@@ -262,9 +260,9 @@ model-index:
       revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
     metrics:
     - type: map
-      value: 60.28270056031872
+      value: 63.889179122289995
     - type: mrr
-      value: 74.38332673789738
+      value: 77.61146286769556
   - task:
       type: STS
     dataset:
@@ -275,17 +273,17 @@ model-index:
       revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
     metrics:
     - type: cos_sim_pearson
-      value: 84.05942144105269
+      value: 88.15075203727929
     - type: cos_sim_spearman
-      value: 82.51212105850809
+      value: 86.9622224570873
     - type: euclidean_pearson
-      value: 81.95639829909122
+      value: 86.70473853624121
     - type: euclidean_spearman
-      value: 82.3717564144213
+      value: 86.9622224570873
     - type: manhattan_pearson
-      value: 81.79273425468256
+      value: 86.21089380980065
     - type: manhattan_spearman
-      value: 82.20066817871039
+      value: 86.75318154937008
   - task:
       type: BitextMining
     dataset:
@@ -296,13 +294,13 @@ model-index:
       revision: d51519689f32196a32af33b075a01d0e7c51e252
     metrics:
     - type: accuracy
-      value: 99.46764091858039
+      value: 99.65553235908142
     - type: f1
-      value: 99.37717466945023
+      value: 99.60681976339595
     - type: precision
-      value: 99.33194154488518
+      value: 99.58246346555325
     - type: recall
-      value: 99.46764091858039
+      value: 99.65553235908142
   - task:
       type: BitextMining
     dataset:
@@ -313,13 +311,13 @@ model-index:
       revision: d51519689f32196a32af33b075a01d0e7c51e252
     metrics:
     - type: accuracy
-      value: 98.29407880255337
+      value: 99.26260180497468
     - type: f1
-      value: 98.11248073959938
+      value: 99.14520507740848
     - type: precision
-      value: 98.02443319392472
+      value: 99.08650671362535
     - type: recall
-      value: 98.29407880255337
+      value: 99.26260180497468
   - task:
       type: BitextMining
     dataset:
@@ -330,13 +328,13 @@ model-index:
       revision: d51519689f32196a32af33b075a01d0e7c51e252
     metrics:
     - type: accuracy
-      value: 97.79009352268791
+      value: 98.07412538967787
     - type: f1
-      value: 97.5176076665512
+      value: 97.86629719431936
     - type: precision
-      value: 97.38136473848286
+      value: 97.76238309664012
     - type: recall
-      value: 97.79009352268791
+      value: 98.07412538967787
   - task:
       type: BitextMining
     dataset:
@@ -347,13 +345,13 @@ model-index:
       revision: d51519689f32196a32af33b075a01d0e7c51e252
     metrics:
     - type: accuracy
-      value: 99.26276987888363
+      value: 99.42074776197998
     - type: f1
-      value: 99.20133403545726
+      value: 99.38564156573635
     - type: precision
-      value: 99.17500438827453
+      value: 99.36808846761454
     - type: recall
-      value: 99.26276987888363
+      value: 99.42074776197998
   - task:
       type: Classification
     dataset:
@@ -364,9 +362,9 @@ model-index:
       revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
     metrics:
     - type: accuracy
-      value: 84.72727272727273
+      value: 85.73376623376623
     - type: f1
-      value: 84.67672206031433
+      value: 85.68480707214599
   - task:
       type: Clustering
     dataset:
@@ -377,7 +375,7 @@ model-index:
       revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
     metrics:
     - type: v_measure
-      value: 35.34220182511161
+      value: 40.935218072113855
   - task:
       type: Clustering
     dataset:
@@ -388,7 +386,7 @@ model-index:
       revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
     metrics:
     - type: v_measure
-      value: 33.4987096128766
+      value: 36.276389017675264
   - task:
       type: Retrieval
     dataset:
@@ -399,65 +397,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 25.558249999999997
+      value: 27.764166666666668
     - type: map_at_10
-      value: 34.44425000000001
+      value: 37.298166666666674
     - type: map_at_100
-      value: 35.59833333333333
+      value: 38.530166666666666
     - type: map_at_1000
-      value: 35.706916666666665
+      value: 38.64416666666667
     - type: map_at_3
-      value: 31.691749999999995
+      value: 34.484833333333334
     - type: map_at_5
-      value: 33.252916666666664
+      value: 36.0385
     - type: mrr_at_1
-      value: 30.252666666666666
+      value: 32.93558333333333
     - type: mrr_at_10
-      value: 38.60675
+      value: 41.589749999999995
     - type: mrr_at_100
-      value: 39.42666666666666
+      value: 42.425333333333334
     - type: mrr_at_1000
-      value: 39.48408333333334
+      value: 42.476333333333336
     - type: mrr_at_3
-      value: 36.17441666666665
+      value: 39.26825
     - type: mrr_at_5
-      value: 37.56275
+      value: 40.567083333333336
     - type: ndcg_at_1
-      value: 30.252666666666666
+      value: 32.93558333333333
     - type: ndcg_at_10
-      value: 39.683
+      value: 42.706583333333334
     - type: ndcg_at_100
-      value: 44.68541666666667
+      value: 47.82483333333333
     - type: ndcg_at_1000
-      value: 46.94316666666668
+      value: 49.95733333333334
     - type: ndcg_at_3
-      value: 34.961749999999995
+      value: 38.064750000000004
     - type: ndcg_at_5
-      value: 37.215666666666664
+      value: 40.18158333333333
     - type: precision_at_1
-      value: 30.252666666666666
+      value: 32.93558333333333
     - type: precision_at_10
-      value: 6.904166666666667
+      value: 7.459833333333334
     - type: precision_at_100
-      value: 1.0989999999999995
+      value: 1.1830833333333335
     - type: precision_at_1000
-      value: 0.14733333333333334
+      value: 0.15608333333333332
     - type: precision_at_3
-      value: 16.037666666666667
+      value: 17.5235
     - type: precision_at_5
-      value: 11.413583333333333
+      value: 12.349833333333333
     - type: recall_at_1
-      value: 25.558249999999997
+      value: 27.764166666666668
     - type: recall_at_10
-      value: 51.13341666666666
+      value: 54.31775
     - type: recall_at_100
-      value: 73.08366666666667
+      value: 76.74350000000001
     - type: recall_at_1000
-      value: 88.79483333333334
+      value: 91.45208333333332
     - type: recall_at_3
-      value: 37.989083333333326
+      value: 41.23425
     - type: recall_at_5
-      value: 43.787833333333325
+      value: 46.73983333333334
   - task:
       type: Retrieval
     dataset:
@@ -468,65 +466,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 10.338
+      value: 12.969
     - type: map_at_10
-      value: 18.360000000000003
+      value: 21.584999999999997
     - type: map_at_100
-      value: 19.942
+      value: 23.3
     - type: map_at_1000
-      value: 20.134
+      value: 23.5
     - type: map_at_3
-      value: 15.174000000000001
+      value: 18.218999999999998
     - type: map_at_5
-      value: 16.830000000000002
+      value: 19.983
     - type: mrr_at_1
-      value: 23.257
+      value: 29.316
     - type: mrr_at_10
-      value: 33.768
+      value: 40.033
     - type: mrr_at_100
-      value: 34.707
+      value: 40.96
     - type: mrr_at_1000
-      value: 34.766000000000005
+      value: 41.001
     - type: mrr_at_3
-      value: 30.977
+      value: 37.123
     - type: mrr_at_5
-      value: 32.528
+      value: 38.757999999999996
     - type: ndcg_at_1
-      value: 23.257
+      value: 29.316
     - type: ndcg_at_10
-      value: 25.733
+      value: 29.858
     - type: ndcg_at_100
-      value: 32.288
+      value: 36.756
     - type: ndcg_at_1000
-      value: 35.992000000000004
+      value: 40.245999999999995
     - type: ndcg_at_3
-      value: 20.866
+      value: 24.822
     - type: ndcg_at_5
-      value: 22.612
+      value: 26.565
     - type: precision_at_1
-      value: 23.257
+      value: 29.316
     - type: precision_at_10
-      value: 8.124
+      value: 9.186
     - type: precision_at_100
-      value: 1.518
+      value: 1.6549999999999998
     - type: precision_at_1000
-      value: 0.219
+      value: 0.22999999999999998
     - type: precision_at_3
-      value: 15.679000000000002
+      value: 18.436
     - type: precision_at_5
-      value: 12.117
+      value: 13.876
     - type: recall_at_1
-      value: 10.338
+      value: 12.969
     - type: recall_at_10
-      value: 31.154
+      value: 35.142
     - type: recall_at_100
-      value: 54.161
+      value: 59.143
     - type: recall_at_1000
-      value: 75.21900000000001
+      value: 78.594
     - type: recall_at_3
-      value: 19.427
+      value: 22.604
     - type: recall_at_5
-      value: 24.214
+      value: 27.883000000000003
   - task:
       type: Retrieval
     dataset:
@@ -537,65 +535,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 8.498
+      value: 8.527999999999999
     - type: map_at_10
-      value: 19.103
+      value: 17.974999999999998
     - type: map_at_100
-      value: 27.375
+      value: 25.665
     - type: map_at_1000
-      value: 28.981
+      value: 27.406000000000002
     - type: map_at_3
-      value: 13.764999999999999
+      value: 13.017999999999999
     - type: map_at_5
-      value: 15.950000000000001
+      value: 15.137
     - type: mrr_at_1
-      value: 65.5
+      value: 62.5
     - type: mrr_at_10
-      value: 74.53800000000001
+      value: 71.891
     - type: mrr_at_100
-      value: 74.71799999999999
+      value: 72.294
     - type: mrr_at_1000
-      value: 74.725
+      value: 72.296
     - type: mrr_at_3
-      value: 72.792
+      value: 69.958
     - type: mrr_at_5
-      value: 73.554
+      value: 71.121
     - type: ndcg_at_1
-      value: 53.37499999999999
+      value: 50.875
     - type: ndcg_at_10
-      value: 41.286
+      value: 38.36
     - type: ndcg_at_100
-      value: 45.972
+      value: 44.235
     - type: ndcg_at_1000
-      value: 53.123
+      value: 52.154
     - type: ndcg_at_3
-      value: 46.172999999999995
+      value: 43.008
     - type: ndcg_at_5
-      value: 43.033
+      value: 40.083999999999996
     - type: precision_at_1
-      value: 65.5
+      value: 62.5
     - type: precision_at_10
-      value: 32.725
+      value: 30.0
     - type: precision_at_100
-      value: 10.683
+      value: 10.038
     - type: precision_at_1000
-      value: 1.978
+      value: 2.0869999999999997
     - type: precision_at_3
-      value: 50
+      value: 46.833000000000006
     - type: precision_at_5
-      value: 41.349999999999994
+      value: 38.800000000000004
     - type: recall_at_1
-      value: 8.498
+      value: 8.527999999999999
     - type: recall_at_10
-      value: 25.070999999999998
+      value: 23.828
     - type: recall_at_100
-      value: 52.383
+      value: 52.322
     - type: recall_at_1000
-      value: 74.91499999999999
+      value: 77.143
     - type: recall_at_3
-      value: 15.207999999999998
+      value: 14.136000000000001
     - type: recall_at_5
-      value: 18.563
+      value: 17.761
   - task:
       type: Classification
     dataset:
@@ -606,9 +604,9 @@ model-index:
       revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
     metrics:
     - type: accuracy
-      value: 46.5
+      value: 51.51
     - type: f1
-      value: 41.93833713984145
+      value: 47.632159862049896
   - task:
       type: Retrieval
     dataset:
@@ -619,65 +617,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 67.914
+      value: 60.734
     - type: map_at_10
-      value: 78.10000000000001
+      value: 72.442
     - type: map_at_100
-      value: 78.333
+      value: 72.735
     - type: map_at_1000
-      value: 78.346
+      value: 72.75
     - type: map_at_3
-      value: 76.626
+      value: 70.41199999999999
     - type: map_at_5
-      value: 77.627
+      value: 71.80499999999999
     - type: mrr_at_1
-      value: 72.74199999999999
+      value: 65.212
     - type: mrr_at_10
-      value: 82.414
+      value: 76.613
     - type: mrr_at_100
-      value: 82.511
+      value: 76.79899999999999
     - type: mrr_at_1000
-      value: 82.513
+      value: 76.801
     - type: mrr_at_3
-      value: 81.231
+      value: 74.8
     - type: mrr_at_5
-      value: 82.065
+      value: 76.12400000000001
     - type: ndcg_at_1
-      value: 72.74199999999999
+      value: 65.212
     - type: ndcg_at_10
-      value: 82.806
+      value: 77.988
     - type: ndcg_at_100
-      value: 83.677
+      value: 79.167
     - type: ndcg_at_1000
-      value: 83.917
+      value: 79.452
     - type: ndcg_at_3
-      value: 80.305
+      value: 74.362
     - type: ndcg_at_5
-      value: 81.843
+      value: 76.666
     - type: precision_at_1
-      value: 72.74199999999999
+      value: 65.212
     - type: precision_at_10
-      value: 10.24
+      value: 10.003
     - type: precision_at_100
-      value: 1.089
+      value: 1.077
     - type: precision_at_1000
-      value: 0.11299999999999999
+      value: 0.11199999999999999
     - type: precision_at_3
-      value: 31.268
+      value: 29.518
     - type: precision_at_5
-      value: 19.706000000000003
+      value: 19.016
     - type: recall_at_1
-      value: 67.914
+      value: 60.734
     - type: recall_at_10
-      value: 92.889
+      value: 90.824
     - type: recall_at_100
-      value: 96.42699999999999
+      value: 95.71600000000001
     - type: recall_at_1000
-      value: 97.92
+      value: 97.577
     - type: recall_at_3
-      value: 86.21
+      value: 81.243
     - type: recall_at_5
-      value: 90.036
+      value: 86.90299999999999
   - task:
       type: Retrieval
     dataset:
@@ -688,65 +686,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 22.166
+      value: 23.845
     - type: map_at_10
-      value: 35.57
+      value: 39.281
     - type: map_at_100
-      value: 37.405
+      value: 41.422
     - type: map_at_1000
-      value: 37.564
+      value: 41.593
     - type: map_at_3
-      value: 30.379
+      value: 34.467
     - type: map_at_5
-      value: 33.324
+      value: 37.017
     - type: mrr_at_1
-      value: 43.519000000000005
+      value: 47.531
     - type: mrr_at_10
-      value: 51.556000000000004
+      value: 56.204
     - type: mrr_at_100
-      value: 52.344
+      value: 56.928999999999995
     - type: mrr_at_1000
-      value: 52.373999999999995
+      value: 56.962999999999994
     - type: mrr_at_3
-      value: 48.868
+      value: 54.115
     - type: mrr_at_5
-      value: 50.319
+      value: 55.373000000000005
     - type: ndcg_at_1
-      value: 43.519000000000005
+      value: 47.531
     - type: ndcg_at_10
-      value: 43.803
+      value: 47.711999999999996
     - type: ndcg_at_100
-      value: 50.468999999999994
+      value: 54.510999999999996
     - type: ndcg_at_1000
-      value: 53.111
+      value: 57.103
     - type: ndcg_at_3
-      value: 38.893
+      value: 44.145
     - type: ndcg_at_5
-      value: 40.653
+      value: 45.032
     - type: precision_at_1
-      value: 43.519000000000005
+      value: 47.531
     - type: precision_at_10
-      value: 12.253
+      value: 13.194
     - type: precision_at_100
-      value: 1.931
+      value: 2.045
     - type: precision_at_1000
-      value: 0.242
+      value: 0.249
     - type: precision_at_3
-      value: 25.617
+      value: 29.424
     - type: precision_at_5
-      value: 19.383
+      value: 21.451
     - type: recall_at_1
-      value: 22.166
+      value: 23.845
     - type: recall_at_10
-      value: 51.6
+      value: 54.967
     - type: recall_at_100
-      value: 76.574
+      value: 79.11399999999999
     - type: recall_at_1000
-      value: 92.192
+      value: 94.56700000000001
     - type: recall_at_3
-      value: 34.477999999999994
+      value: 40.256
     - type: recall_at_5
-      value: 41.835
+      value: 46.215
   - task:
       type: Retrieval
     dataset:
@@ -757,65 +755,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 39.041
+      value: 37.819
     - type: map_at_10
-      value: 62.961999999999996
+      value: 60.889
     - type: map_at_100
-      value: 63.79899999999999
+      value: 61.717999999999996
     - type: map_at_1000
-      value: 63.854
+      value: 61.778
     - type: map_at_3
-      value: 59.399
+      value: 57.254000000000005
     - type: map_at_5
-      value: 61.669
+      value: 59.541
     - type: mrr_at_1
-      value: 78.082
+      value: 75.638
     - type: mrr_at_10
-      value: 84.321
+      value: 82.173
     - type: mrr_at_100
-      value: 84.49600000000001
+      value: 82.362
     - type: mrr_at_1000
-      value: 84.502
+      value: 82.37
     - type: mrr_at_3
-      value: 83.421
+      value: 81.089
     - type: mrr_at_5
-      value: 83.977
+      value: 81.827
     - type: ndcg_at_1
-      value: 78.082
+      value: 75.638
     - type: ndcg_at_10
-      value: 71.229
+      value: 69.317
     - type: ndcg_at_100
-      value: 74.10900000000001
+      value: 72.221
     - type: ndcg_at_1000
-      value: 75.169
+      value: 73.382
     - type: ndcg_at_3
-      value: 66.28699999999999
+      value: 64.14
     - type: ndcg_at_5
-      value: 69.084
+      value: 67.07600000000001
     - type: precision_at_1
-      value: 78.082
+      value: 75.638
     - type: precision_at_10
-      value: 14.993
+      value: 14.704999999999998
     - type: precision_at_100
-      value: 1.7239999999999998
+      value: 1.698
     - type: precision_at_1000
-      value: 0.186
+      value: 0.185
     - type: precision_at_3
-      value: 42.737
+      value: 41.394999999999996
     - type: precision_at_5
-      value: 27.843
+      value: 27.162999999999997
     - type: recall_at_1
-      value: 39.041
+      value: 37.819
     - type: recall_at_10
-      value: 74.96300000000001
+      value: 73.52499999999999
     - type: recall_at_100
-      value: 86.199
+      value: 84.875
     - type: recall_at_1000
-      value: 93.228
+      value: 92.559
     - type: recall_at_3
-      value: 64.105
+      value: 62.092999999999996
     - type: recall_at_5
-      value: 69.608
+      value: 67.907
   - task:
       type: Classification
     dataset:
@@ -826,11 +824,11 @@ model-index:
       revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
     metrics:
     - type: accuracy
-      value: 90.23160000000001
+      value: 94.60079999999999
     - type: ap
-      value: 85.5674856808308
+      value: 92.67396345347356
     - type: f1
-      value: 90.18033354786317
+      value: 94.5988098167121
   - task:
       type: Retrieval
     dataset:
@@ -841,65 +839,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 24.091
+      value: 21.285
     - type: map_at_10
-      value: 36.753
+      value: 33.436
     - type: map_at_100
-      value: 37.913000000000004
+      value: 34.63
     - type: map_at_1000
-      value: 37.958999999999996
+      value: 34.681
     - type: map_at_3
-      value: 32.818999999999996
+      value: 29.412
     - type: map_at_5
-      value: 35.171
+      value: 31.715
     - type: mrr_at_1
-      value: 24.742
+      value: 21.848
     - type: mrr_at_10
-      value: 37.285000000000004
+      value: 33.979
     - type: mrr_at_100
-      value: 38.391999999999996
+      value: 35.118
     - type: mrr_at_1000
-      value: 38.431
+      value: 35.162
     - type: mrr_at_3
-      value: 33.440999999999995
+      value: 30.036
     - type: mrr_at_5
-      value: 35.75
+      value: 32.298
     - type: ndcg_at_1
-      value: 24.742
+      value: 21.862000000000002
     - type: ndcg_at_10
-      value: 43.698
+      value: 40.43
     - type: ndcg_at_100
-      value: 49.145
+      value: 46.17
     - type: ndcg_at_1000
-      value: 50.23800000000001
+      value: 47.412
     - type: ndcg_at_3
-      value: 35.769
+      value: 32.221
     - type: ndcg_at_5
-      value: 39.961999999999996
+      value: 36.332
     - type: precision_at_1
-      value: 24.742
+      value: 21.862000000000002
     - type: precision_at_10
-      value: 6.7989999999999995
+      value: 6.491
     - type: precision_at_100
-      value: 0.95
+      value: 0.935
     - type: precision_at_1000
       value: 0.104
     - type: precision_at_3
-      value: 15.096000000000002
+      value: 13.744
     - type: precision_at_5
-      value: 11.183
+      value: 10.331999999999999
     - type: recall_at_1
-      value: 24.091
+      value: 21.285
     - type: recall_at_10
-      value: 65.068
+      value: 62.083
     - type: recall_at_100
-      value: 89.899
+      value: 88.576
     - type: recall_at_1000
-      value: 98.16
+      value: 98.006
     - type: recall_at_3
-      value: 43.68
+      value: 39.729
     - type: recall_at_5
-      value: 53.754999999999995
+      value: 49.608000000000004
   - task:
       type: Classification
     dataset:
@@ -910,9 +908,9 @@ model-index:
       revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
     metrics:
     - type: accuracy
-      value: 93.66621067031465
+      value: 93.92612859097127
     - type: f1
-      value: 93.49622853272142
+      value: 93.82370333372853
   - task:
       type: Classification
     dataset:
@@ -923,9 +921,9 @@ model-index:
       revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
     metrics:
     - type: accuracy
-      value: 91.94702733164272
+      value: 92.67681036911807
     - type: f1
-      value: 91.17043441745282
+      value: 92.14191382411472
   - task:
       type: Classification
     dataset:
@@ -936,9 +934,9 @@ model-index:
       revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
     metrics:
     - type: accuracy
-      value: 92.20146764509674
+      value: 92.26817878585723
     - type: f1
-      value: 91.98359080555608
+      value: 91.92824250337878
   - task:
       type: Classification
     dataset:
@@ -949,9 +947,9 @@ model-index:
       revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
     metrics:
     - type: accuracy
-      value: 88.99780770435328
+      value: 89.96554963983714
     - type: f1
-      value: 89.19746342724068
+      value: 90.02859329630792
   - task:
       type: Classification
     dataset:
@@ -962,9 +960,9 @@ model-index:
       revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
     metrics:
     - type: accuracy
-      value: 89.78486912871998
+      value: 90.02509860164935
     - type: f1
-      value: 89.24578823628642
+      value: 89.30665159182062
   - task:
       type: Classification
     dataset:
@@ -975,9 +973,9 @@ model-index:
       revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
     metrics:
     - type: accuracy
-      value: 88.74502712477394
+      value: 87.55515370705244
     - type: f1
-      value: 89.00297573881542
+      value: 87.94449232331907
   - task:
       type: Classification
     dataset:
@@ -988,9 +986,9 @@ model-index:
       revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
     metrics:
     - type: accuracy
-      value: 77.9046967624259
+      value: 82.4623803009576
     - type: f1
-      value: 59.36787125785957
+      value: 66.06738378772725
   - task:
       type: Classification
     dataset:
@@ -1001,9 +999,9 @@ model-index:
       revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
     metrics:
     - type: accuracy
-      value: 74.5280360664976
+      value: 79.3716539870386
     - type: f1
-      value: 57.17723440888718
+      value: 60.37614033396853
   - task:
       type: Classification
     dataset:
@@ -1014,9 +1012,9 @@ model-index:
       revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
     metrics:
     - type: accuracy
-      value: 75.44029352901934
+      value: 80.34022681787857
     - type: f1
-      value: 54.052855531072964
+      value: 58.302008026952
   - task:
       type: Classification
     dataset:
@@ -1027,9 +1025,9 @@ model-index:
       revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
     metrics:
     - type: accuracy
-      value: 70.5606013153774
+      value: 76.72095208268087
     - type: f1
-      value: 52.62215934386531
+      value: 59.64524724009049
   - task:
       type: Classification
     dataset:
@@ -1040,9 +1038,9 @@ model-index:
       revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
     metrics:
     - type: accuracy
-      value: 73.11581211903908
+      value: 77.87020437432773
     - type: f1
-      value: 52.341291845645465
+      value: 57.80202694670567
   - task:
       type: Classification
     dataset:
@@ -1053,9 +1051,9 @@ model-index:
       revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
     metrics:
     - type: accuracy
-      value: 74.28933092224233
+      value: 77.73598553345387
     - type: f1
-      value: 57.07918745504911
+      value: 58.19628250675031
   - task:
       type: Classification
     dataset:
@@ -1066,9 +1064,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 62.38063214525892
+      value: 67.6630800268998
     - type: f1
-      value: 59.46463723443009
+      value: 65.00996668051691
   - task:
       type: Classification
     dataset:
@@ -1079,9 +1077,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 56.06926698049766
+      value: 60.7128446536651
     - type: f1
-      value: 52.49084283283562
+      value: 57.95860594874963
   - task:
       type: Classification
     dataset:
@@ -1092,9 +1090,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 60.74983187626093
+      value: 63.61129791526563
     - type: f1
-      value: 56.960640620165904
+      value: 59.75328290206483
   - task:
       type: Classification
     dataset:
@@ -1105,9 +1103,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 64.86550100874243
+      value: 69.00134498991257
     - type: f1
-      value: 62.47370548140688
+      value: 67.0230483991802
   - task:
       type: Classification
     dataset:
@@ -1118,9 +1116,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 63.971082716879636
+      value: 68.54068594485541
     - type: f1
-      value: 61.03812421957381
+      value: 65.54604628946976
   - task:
       type: Classification
     dataset:
@@ -1131,9 +1129,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 54.98318762609282
+      value: 63.032952252858095
     - type: f1
-      value: 51.51207916008392
+      value: 58.715741857057104
   - task:
       type: Classification
     dataset:
@@ -1144,9 +1142,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 69.45527908540686
+      value: 71.80901143241427
     - type: f1
-      value: 66.16631905400318
+      value: 68.33963989243877
   - task:
       type: Classification
     dataset:
@@ -1157,9 +1155,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 69.32750504371216
+      value: 72.47141896435777
     - type: f1
-      value: 66.16755288646591
+      value: 69.56765020308262
   - task:
       type: Classification
     dataset:
@@ -1170,9 +1168,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 69.09213180901143
+      value: 71.2373907195696
     - type: f1
-      value: 66.95654394661507
+      value: 69.04529836036467
   - task:
       type: Classification
     dataset:
@@ -1183,9 +1181,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 73.75588433086752
+      value: 77.05783456624076
     - type: f1
-      value: 71.79973779656923
+      value: 74.69430584708174
   - task:
       type: Classification
     dataset:
@@ -1196,9 +1194,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 70.49428379287154
+      value: 72.82111634162744
     - type: f1
-      value: 68.37494379215734
+      value: 70.77228952803762
   - task:
       type: Classification
     dataset:
@@ -1209,9 +1207,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 69.90921318090115
+      value: 74.25353059852051
     - type: f1
-      value: 66.79517376481645
+      value: 71.05310103416411
   - task:
       type: Classification
     dataset:
@@ -1222,9 +1220,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 70.12104909213181
+      value: 72.28648285137861
     - type: f1
-      value: 67.29448842879584
+      value: 69.08020473732226
   - task:
       type: Classification
     dataset:
@@ -1235,9 +1233,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 69.34095494283793
+      value: 73.31540013449899
     - type: f1
-      value: 67.01134288992947
+      value: 70.9426355465791
   - task:
       type: Classification
     dataset:
@@ -1248,9 +1246,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 67.61264290517822
+      value: 70.2151983860121
     - type: f1
-      value: 64.68730512660757
+      value: 67.52541755908858
   - task:
       type: Classification
     dataset:
@@ -1261,9 +1259,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 67.79757901815738
+      value: 71.58372562205784
     - type: f1
-      value: 65.24938539425598
+      value: 69.49769064229827
   - task:
       type: Classification
     dataset:
@@ -1274,9 +1272,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 69.68728984532616
+      value: 71.9233355749832
     - type: f1
-      value: 67.0487169762553
+      value: 69.36311548259593
   - task:
       type: Classification
     dataset:
@@ -1287,9 +1285,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 62.07464694014795
+      value: 68.07330195023538
     - type: f1
-      value: 59.183532276789286
+      value: 64.99882022345572
   - task:
       type: Classification
     dataset:
@@ -1300,9 +1298,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 70.04707464694015
+      value: 72.62273032952253
     - type: f1
-      value: 67.66829629003848
+      value: 70.6394885471001
   - task:
       type: Classification
     dataset:
@@ -1313,9 +1311,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 62.42434431741762
+      value: 65.77000672494957
     - type: f1
-      value: 59.01617226544757
+      value: 62.9368944815065
   - task:
       type: Classification
     dataset:
@@ -1326,9 +1324,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 70.53127101546738
+      value: 73.453261600538
     - type: f1
-      value: 68.10033760906255
+      value: 70.85069934666681
   - task:
       type: Classification
     dataset:
@@ -1339,9 +1337,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 72.50504371217215
+      value: 74.6906523201076
     - type: f1
-      value: 69.74931103158923
+      value: 72.03249740074217
   - task:
       type: Classification
     dataset:
@@ -1352,9 +1350,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 57.91190316072628
+      value: 63.03631472763953
     - type: f1
-      value: 54.05551136648796
+      value: 59.3165215571852
   - task:
       type: Classification
     dataset:
@@ -1365,9 +1363,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 51.78211163416275
+      value: 58.913920645595155
     - type: f1
-      value: 49.874888544058535
+      value: 57.367337711611285
   - task:
       type: Classification
     dataset:
@@ -1378,9 +1376,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 47.017484868863484
+      value: 54.42837928715535
     - type: f1
-      value: 44.53364263352014
+      value: 52.60527294970906
   - task:
       type: Classification
     dataset:
@@ -1391,9 +1389,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 62.16207128446537
+      value: 66.33490248823135
     - type: f1
-      value: 59.01185692320829
+      value: 63.213340969404065
   - task:
       type: Classification
     dataset:
@@ -1404,9 +1402,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 69.42501681237391
+      value: 70.58507061197041
     - type: f1
-      value: 67.13169450166086
+      value: 68.40256628040486
   - task:
       type: Classification
     dataset:
@@ -1417,9 +1415,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 67.0780094149294
+      value: 69.11230665770006
     - type: f1
-      value: 64.41720167850707
+      value: 66.44863577842305
   - task:
       type: Classification
     dataset:
@@ -1430,9 +1428,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 65.57162071284466
+      value: 69.70073974445192
     - type: f1
-      value: 62.414138683804424
+      value: 67.21291337273702
   - task:
       type: Classification
     dataset:
@@ -1443,9 +1441,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 61.71149966375252
+      value: 66.43913920645595
     - type: f1
-      value: 58.594805125087234
+      value: 64.09838087422806
   - task:
       type: Classification
     dataset:
@@ -1456,9 +1454,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 66.03900470746471
+      value: 70.80026899798251
     - type: f1
-      value: 63.87937257883887
+      value: 68.76986742962444
   - task:
       type: Classification
     dataset:
@@ -1469,9 +1467,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 60.8776059179556
+      value: 64.78816408876934
     - type: f1
-      value: 57.48587618059131
+      value: 62.18781873428972
   - task:
       type: Classification
     dataset:
@@ -1482,9 +1480,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 69.87895090786819
+      value: 71.6577000672495
     - type: f1
-      value: 66.8141299430347
+      value: 68.75171511133003
   - task:
       type: Classification
     dataset:
@@ -1495,9 +1493,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 70.45057162071285
+      value: 74.42501681237391
     - type: f1
-      value: 67.46444039673516
+      value: 71.18434963451544
   - task:
       type: Classification
     dataset:
@@ -1508,9 +1506,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 71.546738399462
+      value: 73.64828513786146
     - type: f1
-      value: 68.63640876702655
+      value: 70.67741914007422
   - task:
       type: Classification
     dataset:
@@ -1521,9 +1519,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 70.72965702757229
+      value: 73.62811028917284
     - type: f1
-      value: 68.54119560379115
+      value: 71.36402039740959
   - task:
       type: Classification
     dataset:
@@ -1534,9 +1532,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 68.35574983187625
+      value: 71.88634835238736
     - type: f1
-      value: 65.88844917691927
+      value: 69.23701923480677
   - task:
       type: Classification
     dataset:
@@ -1547,9 +1545,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 71.70477471418964
+      value: 74.15938130464022
     - type: f1
-      value: 69.19665697061978
+      value: 71.87792218993388
   - task:
       type: Classification
     dataset:
@@ -1560,9 +1558,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 67.0880968392737
+      value: 69.96301277740416
     - type: f1
-      value: 64.76962317666086
+      value: 67.29584200202983
   - task:
       type: Classification
     dataset:
@@ -1573,9 +1571,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 65.18493611297916
+      value: 69.49562878278412
     - type: f1
-      value: 62.49984559035371
+      value: 66.91716685679431
   - task:
       type: Classification
     dataset:
@@ -1586,9 +1584,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 71.75857431069265
+      value: 74.6805648957633
     - type: f1
-      value: 69.20053687623418
+      value: 72.02723592594374
   - task:
       type: Classification
     dataset:
@@ -1599,9 +1597,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 58.500336247478145
+      value: 63.00605245460659
     - type: f1
-      value: 55.2972398687929
+      value: 60.16716669482932
   - task:
       type: Classification
     dataset:
@@ -1612,9 +1610,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 62.68997982515132
+      value: 66.90988567585742
     - type: f1
-      value: 59.36848202755348
+      value: 63.99405488777784
   - task:
       type: Classification
     dataset:
@@ -1625,9 +1623,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 63.01950235373235
+      value: 67.62273032952253
     - type: f1
-      value: 60.09351954625423
+      value: 65.17213906909481
   - task:
       type: Classification
     dataset:
@@ -1638,9 +1636,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 68.29186281102892
+      value: 69.50907868190988
     - type: f1
-      value: 67.57860496703447
+      value: 69.15165697194853
   - task:
       type: Classification
     dataset:
@@ -1651,9 +1649,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 64.77471418964357
+      value: 69.30733019502352
     - type: f1
-      value: 61.913983147713836
+      value: 66.69024007380474
   - task:
       type: Classification
     dataset:
@@ -1664,9 +1662,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 69.87222595830532
+      value: 72.24277067921989
     - type: f1
-      value: 66.03679033708141
+      value: 68.80515408492947
   - task:
       type: Classification
     dataset:
@@ -1677,9 +1675,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 64.04505716207127
+      value: 67.49831876260929
     - type: f1
-      value: 61.28569169817908
+      value: 64.83778567111116
   - task:
       type: Classification
     dataset:
@@ -1690,9 +1688,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 69.38466711499663
+      value: 71.28782784129119
     - type: f1
-      value: 67.20532357036844
+      value: 69.3294186700733
   - task:
       type: Classification
     dataset:
@@ -1703,9 +1701,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 71.12306657700067
+      value: 73.315400134499
     - type: f1
-      value: 68.91251226588182
+      value: 71.22674385243207
   - task:
       type: Classification
     dataset:
@@ -1716,9 +1714,9 @@ model-index:
       revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
     metrics:
     - type: accuracy
-      value: 66.20040349697378
+      value: 69.37794216543377
     - type: f1
-      value: 66.02657347714175
+      value: 68.96962492838232
   - task:
       type: Classification
     dataset:
@@ -1729,9 +1727,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 68.73907195696032
+      value: 73.33557498318764
     - type: f1
-      value: 66.98484521791418
+      value: 72.28949738478356
   - task:
       type: Classification
     dataset:
@@ -1742,9 +1740,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 60.58843308675185
+      value: 65.84398117014123
     - type: f1
-      value: 58.95591723092005
+      value: 64.71026362091463
   - task:
       type: Classification
     dataset:
@@ -1755,9 +1753,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 66.22730329522528
+      value: 69.76462676529925
     - type: f1
-      value: 66.0894499712115
+      value: 69.8229667407667
   - task:
       type: Classification
     dataset:
@@ -1768,9 +1766,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 66.48285137861465
+      value: 72.02420981842636
     - type: f1
-      value: 65.21963176785157
+      value: 71.76576384895898
   - task:
       type: Classification
     dataset:
@@ -1781,9 +1779,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 67.74714189643578
+      value: 72.7572293207801
     - type: f1
-      value: 66.8212192745412
+      value: 72.76840765295256
   - task:
       type: Classification
     dataset:
@@ -1794,9 +1792,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 59.09213180901143
+      value: 68.02286482851379
     - type: f1
-      value: 56.70735546356339
+      value: 66.17237947327872
   - task:
       type: Classification
     dataset:
@@ -1807,9 +1805,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 75.05716207128448
+      value: 77.60928043039678
     - type: f1
-      value: 74.8413712365364
+      value: 77.27094731234773
   - task:
       type: Classification
     dataset:
@@ -1820,9 +1818,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 74.69737726967047
+      value: 77.68325487558843
     - type: f1
-      value: 74.7664341963
+      value: 77.97530399082261
   - task:
       type: Classification
     dataset:
@@ -1833,9 +1831,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 73.90383322125084
+      value: 76.13315400134498
     - type: f1
-      value: 73.59201554448323
+      value: 75.97558584796424
   - task:
       type: Classification
     dataset:
@@ -1846,9 +1844,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 77.51176866173503
+      value: 80.47410894418292
     - type: f1
-      value: 77.46104434577758
+      value: 80.52244841473792
   - task:
       type: Classification
     dataset:
@@ -1859,9 +1857,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 74.31069266980496
+      value: 76.9670477471419
     - type: f1
-      value: 74.61048660675635
+      value: 77.37318805793146
   - task:
       type: Classification
     dataset:
@@ -1872,9 +1870,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 72.95225285810356
+      value: 78.09683927370544
     - type: f1
-      value: 72.33160006574627
+      value: 77.69773737430847
   - task:
       type: Classification
     dataset:
@@ -1885,9 +1883,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 73.12373907195696
+      value: 75.20847343644922
     - type: f1
-      value: 73.20921012557481
+      value: 75.17071738727348
   - task:
       type: Classification
     dataset:
@@ -1898,9 +1896,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 73.86684599865501
+      value: 77.07464694014796
     - type: f1
-      value: 73.82348774610831
+      value: 77.16136207698571
   - task:
       type: Classification
     dataset:
@@ -1911,9 +1909,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 71.40215198386012
+      value: 73.53396099529255
     - type: f1
-      value: 71.11945183971858
+      value: 73.58296404484122
   - task:
       type: Classification
     dataset:
@@ -1924,9 +1922,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 72.12844653665098
+      value: 75.75319435104237
     - type: f1
-      value: 71.34450495911766
+      value: 75.24674707850833
   - task:
       type: Classification
     dataset:
@@ -1937,9 +1935,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 74.52252858103566
+      value: 77.0948217888366
     - type: f1
-      value: 73.98878711342999
+      value: 76.47559490205028
   - task:
       type: Classification
     dataset:
@@ -1950,9 +1948,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 64.93611297915265
+      value: 71.07599193006052
     - type: f1
-      value: 63.723200467653385
+      value: 70.76028043093511
   - task:
       type: Classification
     dataset:
@@ -1963,9 +1961,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 74.11903160726295
+      value: 77.10490921318089
     - type: f1
-      value: 73.82138439467096
+      value: 77.01215275283272
   - task:
       type: Classification
     dataset:
@@ -1976,9 +1974,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 67.15198386012105
+      value: 71.25756556825824
     - type: f1
-      value: 66.02172193802167
+      value: 70.20605314648762
   - task:
       type: Classification
     dataset:
@@ -1989,9 +1987,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 74.32414256893072
+      value: 77.08137188971082
     - type: f1
-      value: 74.30943421170574
+      value: 77.3899269057439
   - task:
       type: Classification
     dataset:
@@ -2002,9 +2000,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 77.46805648957633
+      value: 79.35440484196369
     - type: f1
-      value: 77.62808409298209
+      value: 79.58964690002772
   - task:
       type: Classification
     dataset:
@@ -2015,9 +2013,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 63.318762609280434
+      value: 68.42299932750504
     - type: f1
-      value: 62.094284066075076
+      value: 68.07844356925413
   - task:
       type: Classification
     dataset:
@@ -2028,9 +2026,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 58.34902488231338
+      value: 66.15669132481507
     - type: f1
-      value: 57.12893860987984
+      value: 65.89383352608513
   - task:
       type: Classification
     dataset:
@@ -2041,9 +2039,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 50.88433086751849
+      value: 60.11432414256894
     - type: f1
-      value: 48.2272350802058
+      value: 57.69910594559806
   - task:
       type: Classification
     dataset:
@@ -2054,9 +2052,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 66.4425016812374
+      value: 71.24747814391392
     - type: f1
-      value: 64.61463095996173
+      value: 70.42455553830918
   - task:
       type: Classification
     dataset:
@@ -2067,9 +2065,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 75.04707464694015
+      value: 76.46267652992603
     - type: f1
-      value: 75.05099199098998
+      value: 76.8854559308316
   - task:
       type: Classification
     dataset:
@@ -2080,9 +2078,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 70.50437121721586
+      value: 73.24815063887021
     - type: f1
-      value: 69.83397721096314
+      value: 72.77805034658074
   - task:
       type: Classification
     dataset:
@@ -2093,9 +2091,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 69.94283792871553
+      value: 74.11566913248151
     - type: f1
-      value: 68.8704663703913
+      value: 73.86147988001356
   - task:
       type: Classification
     dataset:
@@ -2106,9 +2104,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 64.79488903833222
+      value: 70.0168123739072
     - type: f1
-      value: 63.615424063345436
+      value: 69.38515920054571
   - task:
       type: Classification
     dataset:
@@ -2119,9 +2117,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 69.88231338264963
+      value: 74.41156691324814
     - type: f1
-      value: 68.57892302593237
+      value: 73.43474953408237
   - task:
       type: Classification
     dataset:
@@ -2132,9 +2130,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 63.248150638870214
+      value: 68.39609952925353
     - type: f1
-      value: 61.06680605338809
+      value: 67.29731681109291
   - task:
       type: Classification
     dataset:
@@ -2145,9 +2143,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 74.84196368527236
+      value: 77.20914593140552
     - type: f1
-      value: 74.52566464968763
+      value: 77.07066497935367
   - task:
       type: Classification
     dataset:
@@ -2158,9 +2156,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 74.8285137861466
+      value: 78.52387357094821
     - type: f1
-      value: 74.8853197608802
+      value: 78.5259569473291
   - task:
       type: Classification
     dataset:
@@ -2171,9 +2169,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 74.13248150638869
+      value: 76.6913248150639
     - type: f1
-      value: 74.3982040999179
+      value: 76.91201656350455
   - task:
       type: Classification
     dataset:
@@ -2184,9 +2182,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 73.49024882313383
+      value: 77.1217215870881
     - type: f1
-      value: 73.82153848368573
+      value: 77.41179937912504
   - task:
       type: Classification
     dataset:
@@ -2197,9 +2195,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 71.72158708809684
+      value: 75.25891055817083
     - type: f1
-      value: 71.85049433180541
+      value: 75.8089244542887
   - task:
       type: Classification
     dataset:
@@ -2210,9 +2208,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 75.137861466039
+      value: 77.70679219905851
     - type: f1
-      value: 75.37628348188467
+      value: 78.21459594517711
   - task:
       type: Classification
     dataset:
@@ -2223,9 +2221,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 71.86953597848016
+      value: 74.83523873570948
     - type: f1
-      value: 71.87537624521661
+      value: 74.86847028401978
   - task:
       type: Classification
     dataset:
@@ -2236,9 +2234,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 70.27572293207801
+      value: 74.71755211835911
     - type: f1
-      value: 68.80017302344231
+      value: 74.0214326485662
   - task:
       type: Classification
     dataset:
@@ -2249,9 +2247,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 76.09952925353059
+      value: 79.06523201075991
     - type: f1
-      value: 76.07992707688408
+      value: 79.10545620325138
   - task:
       type: Classification
     dataset:
@@ -2262,9 +2260,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 63.140551445864155
+      value: 67.91862811028918
     - type: f1
-      value: 61.73855010331415
+      value: 66.50386121217983
   - task:
       type: Classification
     dataset:
@@ -2275,9 +2273,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 66.27774041694687
+      value: 70.93140551445865
     - type: f1
-      value: 64.83664868894539
+      value: 70.755435928495
   - task:
       type: Classification
     dataset:
@@ -2288,9 +2286,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 66.69468728984533
+      value: 72.40753194351042
     - type: f1
-      value: 64.76239666920868
+      value: 71.61816115782923
   - task:
       type: Classification
     dataset:
@@ -2301,9 +2299,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 73.44653665097512
+      value: 75.1815736381977
     - type: f1
-      value: 73.14646052013873
+      value: 75.08016717887205
   - task:
       type: Classification
     dataset:
@@ -2314,9 +2312,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 67.71351714862139
+      value: 72.86482851378614
     - type: f1
-      value: 66.67212180163382
+      value: 72.39521180006291
   - task:
       type: Classification
     dataset:
@@ -2327,9 +2325,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 73.9946200403497
+      value: 76.46940147948891
     - type: f1
-      value: 73.87348793725525
+      value: 76.70044085362349
   - task:
       type: Classification
     dataset:
@@ -2340,9 +2338,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 68.15400134498992
+      value: 71.89307330195024
     - type: f1
-      value: 67.09433241421094
+      value: 71.5721825332298
   - task:
       type: Classification
     dataset:
@@ -2353,9 +2351,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 73.11365164761264
+      value: 74.7511768661735
     - type: f1
-      value: 73.59502539433753
+      value: 75.17918654541515
   - task:
       type: Classification
     dataset:
@@ -2366,9 +2364,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 76.82582380632145
+      value: 78.69535978480162
     - type: f1
-      value: 76.89992945316313
+      value: 78.90019070153316
   - task:
       type: Classification
     dataset:
@@ -2379,9 +2377,9 @@ model-index:
       revision: 7d571f92784cd94a019292a1f45445077d0ef634
     metrics:
     - type: accuracy
-      value: 71.81237390719569
+      value: 75.45729657027572
     - type: f1
-      value: 72.36499770986265
+      value: 76.19578371794672
   - task:
       type: Clustering
     dataset:
@@ -2392,7 +2390,7 @@ model-index:
       revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
     metrics:
     - type: v_measure
-      value: 31.480506569594695
+      value: 36.92715354123554
   - task:
       type: Clustering
     dataset:
@@ -2403,7 +2401,7 @@ model-index:
       revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
     metrics:
     - type: v_measure
-      value: 29.71252128004552
+      value: 35.53536244162518
   - task:
       type: Reranking
     dataset:
@@ -2414,9 +2412,9 @@ model-index:
       revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
     metrics:
     - type: map
-      value: 31.421396787056548
+      value: 33.08507884504006
     - type: mrr
-      value: 32.48155274872267
+      value: 34.32436977159129
   - task:
       type: Retrieval
     dataset:
@@ -2427,65 +2425,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 5.595
+      value: 5.935
     - type: map_at_10
-      value: 12.642000000000001
+      value: 13.297
     - type: map_at_100
-      value: 15.726
+      value: 16.907
     - type: map_at_1000
-      value: 17.061999999999998
+      value: 18.391
     - type: map_at_3
-      value: 9.125
+      value: 9.626999999999999
     - type: map_at_5
-      value: 10.866000000000001
+      value: 11.190999999999999
     - type: mrr_at_1
-      value: 43.344
+      value: 46.129999999999995
     - type: mrr_at_10
-      value: 52.227999999999994
+      value: 54.346000000000004
     - type: mrr_at_100
-      value: 52.898999999999994
+      value: 55.067
     - type: mrr_at_1000
-      value: 52.944
+      value: 55.1
     - type: mrr_at_3
-      value: 49.845
+      value: 51.961
     - type: mrr_at_5
-      value: 51.115
+      value: 53.246
     - type: ndcg_at_1
-      value: 41.949999999999996
+      value: 44.118
     - type: ndcg_at_10
-      value: 33.995
+      value: 35.534
     - type: ndcg_at_100
-      value: 30.869999999999997
+      value: 32.946999999999996
     - type: ndcg_at_1000
-      value: 39.487
+      value: 41.599000000000004
     - type: ndcg_at_3
-      value: 38.903999999999996
+      value: 40.25
     - type: ndcg_at_5
-      value: 37.236999999999995
+      value: 37.978
     - type: precision_at_1
-      value: 43.344
+      value: 46.129999999999995
     - type: precision_at_10
-      value: 25.480000000000004
+      value: 26.842
     - type: precision_at_100
-      value: 7.672
+      value: 8.427
     - type: precision_at_1000
-      value: 2.028
+      value: 2.128
     - type: precision_at_3
-      value: 36.636
+      value: 37.977
     - type: precision_at_5
-      value: 32.632
+      value: 32.879000000000005
     - type: recall_at_1
-      value: 5.595
+      value: 5.935
     - type: recall_at_10
-      value: 16.466
+      value: 17.211000000000002
     - type: recall_at_100
-      value: 31.226
+      value: 34.33
     - type: recall_at_1000
-      value: 62.778999999999996
+      value: 65.551
     - type: recall_at_3
-      value: 9.931
+      value: 10.483
     - type: recall_at_5
-      value: 12.884
+      value: 13.078999999999999
   - task:
       type: Retrieval
     dataset:
@@ -2496,65 +2494,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 40.414
+      value: 35.231
     - type: map_at_10
-      value: 56.754000000000005
+      value: 50.202000000000005
     - type: map_at_100
-      value: 57.457
+      value: 51.154999999999994
     - type: map_at_1000
-      value: 57.477999999999994
+      value: 51.181
     - type: map_at_3
-      value: 52.873999999999995
+      value: 45.774
     - type: map_at_5
-      value: 55.175
+      value: 48.522
     - type: mrr_at_1
-      value: 45.278
+      value: 39.687
     - type: mrr_at_10
-      value: 59.192
+      value: 52.88
     - type: mrr_at_100
-      value: 59.650000000000006
+      value: 53.569
     - type: mrr_at_1000
-      value: 59.665
+      value: 53.58500000000001
     - type: mrr_at_3
-      value: 56.141
+      value: 49.228
     - type: mrr_at_5
-      value: 57.998000000000005
+      value: 51.525
     - type: ndcg_at_1
-      value: 45.278
+      value: 39.687
     - type: ndcg_at_10
-      value: 64.056
+      value: 57.754000000000005
     - type: ndcg_at_100
-      value: 66.89
+      value: 61.597
     - type: ndcg_at_1000
-      value: 67.364
+      value: 62.18900000000001
     - type: ndcg_at_3
-      value: 56.97
+      value: 49.55
     - type: ndcg_at_5
-      value: 60.719
+      value: 54.11899999999999
     - type: precision_at_1
-      value: 45.278
+      value: 39.687
     - type: precision_at_10
-      value: 9.994
+      value: 9.313
     - type: precision_at_100
-      value: 1.165
+      value: 1.146
     - type: precision_at_1000
-      value: 0.121
+      value: 0.12
     - type: precision_at_3
-      value: 25.512
+      value: 22.229
     - type: precision_at_5
-      value: 17.509
+      value: 15.939
     - type: recall_at_1
-      value: 40.414
+      value: 35.231
     - type: recall_at_10
-      value: 83.596
+      value: 78.083
     - type: recall_at_100
-      value: 95.72
+      value: 94.42099999999999
     - type: recall_at_1000
-      value: 99.24
+      value: 98.81
     - type: recall_at_3
-      value: 65.472
+      value: 57.047000000000004
     - type: recall_at_5
-      value: 74.039
+      value: 67.637
   - task:
       type: Retrieval
     dataset:
@@ -2565,65 +2563,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 70.352
+      value: 71.241
     - type: map_at_10
-      value: 84.369
+      value: 85.462
     - type: map_at_100
-      value: 85.02499999999999
+      value: 86.083
     - type: map_at_1000
-      value: 85.04
+      value: 86.09700000000001
     - type: map_at_3
-      value: 81.42399999999999
+      value: 82.49499999999999
     - type: map_at_5
-      value: 83.279
+      value: 84.392
     - type: mrr_at_1
-      value: 81.05
+      value: 82.09
     - type: mrr_at_10
-      value: 87.401
+      value: 88.301
     - type: mrr_at_100
-      value: 87.504
+      value: 88.383
     - type: mrr_at_1000
-      value: 87.505
+      value: 88.384
     - type: mrr_at_3
-      value: 86.443
+      value: 87.37
     - type: mrr_at_5
-      value: 87.10799999999999
+      value: 88.035
     - type: ndcg_at_1
-      value: 81.04
+      value: 82.12
     - type: ndcg_at_10
-      value: 88.181
+      value: 89.149
     - type: ndcg_at_100
-      value: 89.411
+      value: 90.235
     - type: ndcg_at_1000
-      value: 89.507
+      value: 90.307
     - type: ndcg_at_3
-      value: 85.28099999999999
+      value: 86.37599999999999
     - type: ndcg_at_5
-      value: 86.888
+      value: 87.964
     - type: precision_at_1
-      value: 81.04
+      value: 82.12
     - type: precision_at_10
-      value: 13.406
+      value: 13.56
     - type: precision_at_100
-      value: 1.5350000000000001
+      value: 1.539
     - type: precision_at_1000
       value: 0.157
     - type: precision_at_3
-      value: 37.31
+      value: 37.88
     - type: precision_at_5
-      value: 24.54
+      value: 24.92
     - type: recall_at_1
-      value: 70.352
+      value: 71.241
     - type: recall_at_10
-      value: 95.358
+      value: 96.128
     - type: recall_at_100
-      value: 99.541
+      value: 99.696
     - type: recall_at_1000
-      value: 99.984
+      value: 99.994
     - type: recall_at_3
-      value: 87.111
+      value: 88.181
     - type: recall_at_5
-      value: 91.643
+      value: 92.694
   - task:
       type: Clustering
     dataset:
@@ -2634,7 +2632,7 @@ model-index:
       revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
     metrics:
     - type: v_measure
-      value: 46.54068723291946
+      value: 56.59757799655151
   - task:
       type: Clustering
     dataset:
@@ -2645,7 +2643,7 @@ model-index:
       revision: 282350215ef01743dc01b456c7f5241fa8937f16
     metrics:
     - type: v_measure
-      value: 63.216287629895994
+      value: 64.27391998854624
   - task:
       type: Retrieval
     dataset:
@@ -2656,65 +2654,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 4.023000000000001
+      value: 4.243
     - type: map_at_10
-      value: 10.071
+      value: 10.965
     - type: map_at_100
-      value: 11.892
+      value: 12.934999999999999
     - type: map_at_1000
-      value: 12.196
+      value: 13.256
     - type: map_at_3
-      value: 7.234
+      value: 7.907
     - type: map_at_5
-      value: 8.613999999999999
+      value: 9.435
     - type: mrr_at_1
-      value: 19.900000000000002
+      value: 20.9
     - type: mrr_at_10
-      value: 30.516
+      value: 31.849
     - type: mrr_at_100
-      value: 31.656000000000002
+      value: 32.964
     - type: mrr_at_1000
-      value: 31.723000000000003
+      value: 33.024
     - type: mrr_at_3
-      value: 27.400000000000002
+      value: 28.517
     - type: mrr_at_5
-      value: 29.270000000000003
+      value: 30.381999999999998
     - type: ndcg_at_1
-      value: 19.900000000000002
+      value: 20.9
     - type: ndcg_at_10
-      value: 17.474
+      value: 18.723
     - type: ndcg_at_100
-      value: 25.020999999999997
+      value: 26.384999999999998
     - type: ndcg_at_1000
-      value: 30.728
+      value: 32.114
     - type: ndcg_at_3
-      value: 16.588
+      value: 17.753
     - type: ndcg_at_5
-      value: 14.498
+      value: 15.558
     - type: precision_at_1
-      value: 19.900000000000002
+      value: 20.9
     - type: precision_at_10
-      value: 9.139999999999999
+      value: 9.8
     - type: precision_at_100
-      value: 2.011
+      value: 2.078
     - type: precision_at_1000
-      value: 0.33899999999999997
+      value: 0.345
     - type: precision_at_3
-      value: 15.667
+      value: 16.900000000000002
     - type: precision_at_5
-      value: 12.839999999999998
+      value: 13.88
     - type: recall_at_1
-      value: 4.023000000000001
+      value: 4.243
     - type: recall_at_10
-      value: 18.497
+      value: 19.885
     - type: recall_at_100
-      value: 40.8
+      value: 42.17
     - type: recall_at_1000
-      value: 68.812
+      value: 70.12
     - type: recall_at_3
-      value: 9.508
+      value: 10.288
     - type: recall_at_5
-      value: 12.983
+      value: 14.072000000000001
   - task:
       type: STS
     dataset:
@@ -2725,17 +2723,17 @@ model-index:
       revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
     metrics:
     - type: cos_sim_pearson
-      value: 83.967008785134
+      value: 85.84209174935282
     - type: cos_sim_spearman
-      value: 80.23142141101837
+      value: 81.73248048438833
     - type: euclidean_pearson
-      value: 81.20166064704539
+      value: 83.02810070308149
     - type: euclidean_spearman
-      value: 80.18961335654585
+      value: 81.73248295679514
     - type: manhattan_pearson
-      value: 81.13925443187625
+      value: 82.95368060376002
     - type: manhattan_spearman
-      value: 80.07948723044424
+      value: 81.60277910998718
   - task:
       type: STS
     dataset:
@@ -2746,17 +2744,17 @@ model-index:
       revision: a0d554a64d88156834ff5ae9920b964011b16384
     metrics:
     - type: cos_sim_pearson
-      value: 86.94262461316023
+      value: 88.52628804556943
     - type: cos_sim_spearman
-      value: 80.01596278563865
+      value: 82.5713913555672
     - type: euclidean_pearson
-      value: 83.80799622922581
+      value: 85.8796774746988
     - type: euclidean_spearman
-      value: 79.94984954947103
+      value: 82.57137506803424
     - type: manhattan_pearson
-      value: 83.68473841756281
+      value: 85.79671002960058
     - type: manhattan_spearman
-      value: 79.84990707951822
+      value: 82.49445981618027
   - task:
       type: STS
     dataset:
@@ -2767,17 +2765,17 @@ model-index:
       revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
     metrics:
     - type: cos_sim_pearson
-      value: 80.57346443146068
+      value: 86.23682503505542
     - type: cos_sim_spearman
-      value: 81.54689837570866
+      value: 87.15008956711806
     - type: euclidean_pearson
-      value: 81.10909881516007
+      value: 86.79805401524959
     - type: euclidean_spearman
-      value: 81.56746243261762
+      value: 87.15008956711806
     - type: manhattan_pearson
-      value: 80.87076036186582
+      value: 86.65298502699244
     - type: manhattan_spearman
-      value: 81.33074987964402
+      value: 86.97677821948562
   - task:
       type: STS
     dataset:
@@ -2788,17 +2786,17 @@ model-index:
       revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
     metrics:
     - type: cos_sim_pearson
-      value: 79.54733787179849
+      value: 85.63370304677802
     - type: cos_sim_spearman
-      value: 77.72202105610411
+      value: 84.97105553540318
     - type: euclidean_pearson
-      value: 78.9043595478849
+      value: 85.28896108687721
     - type: euclidean_spearman
-      value: 77.93422804309435
+      value: 84.97105553540318
     - type: manhattan_pearson
-      value: 78.58115121621368
+      value: 85.09663190337331
     - type: manhattan_spearman
-      value: 77.62508135122033
+      value: 84.79126831644619
   - task:
       type: STS
     dataset:
@@ -2809,17 +2807,17 @@ model-index:
       revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
     metrics:
     - type: cos_sim_pearson
-      value: 88.59880017237558
+      value: 90.2614838800733
     - type: cos_sim_spearman
-      value: 89.31088630824758
+      value: 91.0509162991835
     - type: euclidean_pearson
-      value: 88.47069261564656
+      value: 90.33098317533373
     - type: euclidean_spearman
-      value: 89.33581971465233
+      value: 91.05091625871644
     - type: manhattan_pearson
-      value: 88.40774264100956
+      value: 90.26250435151107
     - type: manhattan_spearman
-      value: 89.28657485627835
+      value: 90.97999594417519
   - task:
       type: STS
     dataset:
@@ -2830,939 +2828,372 @@ model-index:
       revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
     metrics:
     - type: cos_sim_pearson
-      value: 84.08055117917084
+      value: 85.80480973335091
     - type: cos_sim_spearman
-      value: 85.78491813080304
+      value: 87.313695492969
     - type: euclidean_pearson
-      value: 84.99329155500392
+      value: 86.49267251576939
     - type: euclidean_spearman
-      value: 85.76728064677287
+      value: 87.313695492969
     - type: manhattan_pearson
-      value: 84.87947428989587
+      value: 86.44019901831935
     - type: manhattan_spearman
-      value: 85.62429454917464
+      value: 87.24205395460392
   - task:
       type: STS
     dataset:
       type: mteb/sts17-crosslingual-sts
-      name: MTEB STS17 (ko-ko)
-      config: ko-ko
+      name: MTEB STS17 (en-en)
+      config: en-en
       split: test
       revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
     metrics:
     - type: cos_sim_pearson
-      value: 82.14190939287384
+      value: 90.05662789380672
     - type: cos_sim_spearman
-      value: 82.27331573306041
+      value: 90.02759424426651
     - type: euclidean_pearson
-      value: 81.891896953716
+      value: 90.4042483422981
     - type: euclidean_spearman
-      value: 82.37695542955998
+      value: 90.02759424426651
     - type: manhattan_pearson
-      value: 81.73123869460504
+      value: 90.51446975000226
     - type: manhattan_spearman
-      value: 82.19989168441421
+      value: 90.08832889933616
   - task:
       type: STS
     dataset:
-      type: mteb/sts17-crosslingual-sts
-      name: MTEB STS17 (ar-ar)
-      config: ar-ar
+      type: mteb/sts22-crosslingual-sts
+      name: MTEB STS22 (en)
+      config: en
       split: test
-      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
+      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
     metrics:
     - type: cos_sim_pearson
-      value: 76.84695301843362
+      value: 67.5975528273532
     - type: cos_sim_spearman
-      value: 77.87790986014461
+      value: 67.62969861411354
     - type: euclidean_pearson
-      value: 76.91981583106315
+      value: 69.224275734323
     - type: euclidean_spearman
-      value: 77.88154772749589
+      value: 67.62969861411354
     - type: manhattan_pearson
-      value: 76.94953277451093
+      value: 69.3761447059927
     - type: manhattan_spearman
-      value: 77.80499230728604
+      value: 67.90921005611467
   - task:
       type: STS
     dataset:
-      type: mteb/sts17-crosslingual-sts
-      name: MTEB STS17 (en-ar)
-      config: en-ar
+      type: mteb/stsbenchmark-sts
+      name: MTEB STSBenchmark
+      config: default
       split: test
-      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
+      revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
     metrics:
     - type: cos_sim_pearson
-      value: 75.44657840482016
+      value: 87.11244327231684
     - type: cos_sim_spearman
-      value: 75.05531095119674
+      value: 88.37902438979035
     - type: euclidean_pearson
-      value: 75.88161755829299
+      value: 87.86054279847336
     - type: euclidean_spearman
-      value: 74.73176238219332
+      value: 88.37902438979035
     - type: manhattan_pearson
-      value: 75.63984765635362
+      value: 87.77257757320378
     - type: manhattan_spearman
-      value: 74.86476440770737
+      value: 88.25208966098123
   - task:
-      type: STS
+      type: Reranking
     dataset:
-      type: mteb/sts17-crosslingual-sts
-      name: MTEB STS17 (en-de)
-      config: en-de
+      type: mteb/scidocs-reranking
+      name: MTEB SciDocsRR
+      config: default
       split: test
-      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
+      revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
     metrics:
-    - type: cos_sim_pearson
-      value: 85.64700140524133
-    - type: cos_sim_spearman
-      value: 86.16014210425672
-    - type: euclidean_pearson
-      value: 86.49086860843221
-    - type: euclidean_spearman
-      value: 86.09729326815614
-    - type: manhattan_pearson
-      value: 86.43406265125513
-    - type: manhattan_spearman
-      value: 86.17740150939994
+    - type: map
+      value: 85.87174608143563
+    - type: mrr
+      value: 96.12836872640794
   - task:
-      type: STS
+      type: Retrieval
     dataset:
-      type: mteb/sts17-crosslingual-sts
-      name: MTEB STS17 (en-en)
-      config: en-en
+      type: scifact
+      name: MTEB SciFact
+      config: default
       split: test
-      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
+      revision: None
     metrics:
-    - type: cos_sim_pearson
-      value: 87.91170098764921
-    - type: cos_sim_spearman
-      value: 88.12437004058931
-    - type: euclidean_pearson
-      value: 88.81828254494437
-    - type: euclidean_spearman
-      value: 88.14831794572122
-    - type: manhattan_pearson
-      value: 88.93442183448961
-    - type: manhattan_spearman
-      value: 88.15254630778304
+    - type: map_at_1
+      value: 57.760999999999996
+    - type: map_at_10
+      value: 67.258
+    - type: map_at_100
+      value: 67.757
+    - type: map_at_1000
+      value: 67.78800000000001
+    - type: map_at_3
+      value: 64.602
+    - type: map_at_5
+      value: 65.64
+    - type: mrr_at_1
+      value: 60.667
+    - type: mrr_at_10
+      value: 68.441
+    - type: mrr_at_100
+      value: 68.825
+    - type: mrr_at_1000
+      value: 68.853
+    - type: mrr_at_3
+      value: 66.444
+    - type: mrr_at_5
+      value: 67.26100000000001
+    - type: ndcg_at_1
+      value: 60.667
+    - type: ndcg_at_10
+      value: 71.852
+    - type: ndcg_at_100
+      value: 73.9
+    - type: ndcg_at_1000
+      value: 74.628
+    - type: ndcg_at_3
+      value: 67.093
+    - type: ndcg_at_5
+      value: 68.58
+    - type: precision_at_1
+      value: 60.667
+    - type: precision_at_10
+      value: 9.6
+    - type: precision_at_100
+      value: 1.0670000000000002
+    - type: precision_at_1000
+      value: 0.11199999999999999
+    - type: precision_at_3
+      value: 26.111
+    - type: precision_at_5
+      value: 16.733
+    - type: recall_at_1
+      value: 57.760999999999996
+    - type: recall_at_10
+      value: 84.967
+    - type: recall_at_100
+      value: 93.833
+    - type: recall_at_1000
+      value: 99.333
+    - type: recall_at_3
+      value: 71.589
+    - type: recall_at_5
+      value: 75.483
   - task:
-      type: STS
+      type: PairClassification
     dataset:
-      type: mteb/sts17-crosslingual-sts
-      name: MTEB STS17 (en-tr)
-      config: en-tr
+      type: mteb/sprintduplicatequestions-pairclassification
+      name: MTEB SprintDuplicateQuestions
+      config: default
       split: test
-      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
+      revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
     metrics:
-    - type: cos_sim_pearson
-      value: 72.91390577997292
-    - type: cos_sim_spearman
-      value: 71.22979457536074
-    - type: euclidean_pearson
-      value: 74.40314008106749
-    - type: euclidean_spearman
-      value: 72.54972136083246
-    - type: manhattan_pearson
-      value: 73.85687539530218
-    - type: manhattan_spearman
-      value: 72.09500771742637
+    - type: cos_sim_accuracy
+      value: 99.66633663366336
+    - type: cos_sim_ap
+      value: 91.17685358899108
+    - type: cos_sim_f1
+      value: 82.16818642350559
+    - type: cos_sim_precision
+      value: 83.26488706365504
+    - type: cos_sim_recall
+      value: 81.10000000000001
+    - type: dot_accuracy
+      value: 99.66633663366336
+    - type: dot_ap
+      value: 91.17663411119032
+    - type: dot_f1
+      value: 82.16818642350559
+    - type: dot_precision
+      value: 83.26488706365504
+    - type: dot_recall
+      value: 81.10000000000001
+    - type: euclidean_accuracy
+      value: 99.66633663366336
+    - type: euclidean_ap
+      value: 91.17685189882275
+    - type: euclidean_f1
+      value: 82.16818642350559
+    - type: euclidean_precision
+      value: 83.26488706365504
+    - type: euclidean_recall
+      value: 81.10000000000001
+    - type: manhattan_accuracy
+      value: 99.66633663366336
+    - type: manhattan_ap
+      value: 91.2241619496737
+    - type: manhattan_f1
+      value: 82.20472440944883
+    - type: manhattan_precision
+      value: 86.51933701657458
+    - type: manhattan_recall
+      value: 78.3
+    - type: max_accuracy
+      value: 99.66633663366336
+    - type: max_ap
+      value: 91.2241619496737
+    - type: max_f1
+      value: 82.20472440944883
   - task:
-      type: STS
+      type: Clustering
     dataset:
-      type: mteb/sts17-crosslingual-sts
-      name: MTEB STS17 (es-en)
-      config: es-en
+      type: mteb/stackexchange-clustering
+      name: MTEB StackExchangeClustering
+      config: default
       split: test
-      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
+      revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
     metrics:
-    - type: cos_sim_pearson
-      value: 80.9301067983089
-    - type: cos_sim_spearman
-      value: 80.74989828346473
-    - type: euclidean_pearson
-      value: 81.36781301814257
-    - type: euclidean_spearman
-      value: 80.9448819964426
-    - type: manhattan_pearson
-      value: 81.0351322685609
-    - type: manhattan_spearman
-      value: 80.70192121844177
+    - type: v_measure
+      value: 66.85101268897951
   - task:
-      type: STS
+      type: Clustering
     dataset:
-      type: mteb/sts17-crosslingual-sts
-      name: MTEB STS17 (es-es)
-      config: es-es
+      type: mteb/stackexchange-clustering-p2p
+      name: MTEB StackExchangeClusteringP2P
+      config: default
       split: test
-      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
+      revision: 815ca46b2622cec33ccafc3735d572c266efdb44
     metrics:
-    - type: cos_sim_pearson
-      value: 87.13820465980005
-    - type: cos_sim_spearman
-      value: 86.73532498758757
-    - type: euclidean_pearson
-      value: 87.21329451846637
-    - type: euclidean_spearman
-      value: 86.57863198601002
-    - type: manhattan_pearson
-      value: 87.06973713818554
-    - type: manhattan_spearman
-      value: 86.47534918791499
+    - type: v_measure
+      value: 42.461184054706905
   - task:
-      type: STS
+      type: Reranking
     dataset:
-      type: mteb/sts17-crosslingual-sts
-      name: MTEB STS17 (fr-en)
-      config: fr-en
+      type: mteb/stackoverflowdupquestions-reranking
+      name: MTEB StackOverflowDupQuestions
+      config: default
       split: test
-      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
+      revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
     metrics:
-    - type: cos_sim_pearson
-      value: 85.48720108904415
-    - type: cos_sim_spearman
-      value: 85.62221757068387
-    - type: euclidean_pearson
-      value: 86.1010129512749
-    - type: euclidean_spearman
-      value: 85.86580966509942
-    - type: manhattan_pearson
-      value: 86.26800938808971
-    - type: manhattan_spearman
-      value: 85.88902721678429
+    - type: map
+      value: 51.44542568873886
+    - type: mrr
+      value: 52.33656151854681
   - task:
-      type: STS
+      type: Summarization
     dataset:
-      type: mteb/sts17-crosslingual-sts
-      name: MTEB STS17 (it-en)
-      config: it-en
+      type: mteb/summeval
+      name: MTEB SummEval
+      config: default
       split: test
-      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
+      revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
     metrics:
     - type: cos_sim_pearson
-      value: 83.98021347333516
+      value: 30.75982974997539
     - type: cos_sim_spearman
-      value: 84.53806553803501
-    - type: euclidean_pearson
-      value: 84.61483347248364
-    - type: euclidean_spearman
-      value: 85.14191408011702
-    - type: manhattan_pearson
-      value: 84.75297588825967
-    - type: manhattan_spearman
-      value: 85.33176753669242
+      value: 30.385405026539914
+    - type: dot_pearson
+      value: 30.75982433546523
+    - type: dot_spearman
+      value: 30.385405026539914
   - task:
-      type: STS
+      type: Retrieval
     dataset:
-      type: mteb/sts17-crosslingual-sts
-      name: MTEB STS17 (nl-en)
-      config: nl-en
+      type: trec-covid
+      name: MTEB TRECCOVID
+      config: default
       split: test
-      revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
+      revision: None
     metrics:
-    - type: cos_sim_pearson
-      value: 84.51856644893233
-    - type: cos_sim_spearman
-      value: 85.27510748506413
-    - type: euclidean_pearson
-      value: 85.09886861540977
-    - type: euclidean_spearman
-      value: 85.62579245860887
-    - type: manhattan_pearson
-      value: 84.93017860464607
-    - type: manhattan_spearman
-      value: 85.5063988898453
+    - type: map_at_1
+      value: 0.22799999999999998
+    - type: map_at_10
+      value: 2.064
+    - type: map_at_100
+      value: 13.056000000000001
+    - type: map_at_1000
+      value: 31.747999999999998
+    - type: map_at_3
+      value: 0.67
+    - type: map_at_5
+      value: 1.097
+    - type: mrr_at_1
+      value: 90.0
+    - type: mrr_at_10
+      value: 94.667
+    - type: mrr_at_100
+      value: 94.667
+    - type: mrr_at_1000
+      value: 94.667
+    - type: mrr_at_3
+      value: 94.667
+    - type: mrr_at_5
+      value: 94.667
+    - type: ndcg_at_1
+      value: 86.0
+    - type: ndcg_at_10
+      value: 82.0
+    - type: ndcg_at_100
+      value: 64.307
+    - type: ndcg_at_1000
+      value: 57.023999999999994
+    - type: ndcg_at_3
+      value: 85.816
+    - type: ndcg_at_5
+      value: 84.904
+    - type: precision_at_1
+      value: 90.0
+    - type: precision_at_10
+      value: 85.8
+    - type: precision_at_100
+      value: 66.46
+    - type: precision_at_1000
+      value: 25.202
+    - type: precision_at_3
+      value: 90.0
+    - type: precision_at_5
+      value: 89.2
+    - type: recall_at_1
+      value: 0.22799999999999998
+    - type: recall_at_10
+      value: 2.235
+    - type: recall_at_100
+      value: 16.185
+    - type: recall_at_1000
+      value: 53.620999999999995
+    - type: recall_at_3
+      value: 0.7040000000000001
+    - type: recall_at_5
+      value: 1.172
   - task:
-      type: STS
+      type: BitextMining
     dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (en)
-      config: en
+      type: mteb/tatoeba-bitext-mining
+      name: MTEB Tatoeba (sqi-eng)
+      config: sqi-eng
       split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
+      revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
-    - type: cos_sim_pearson
-      value: 62.581573200584195
-    - type: cos_sim_spearman
-      value: 63.05503590247928
-    - type: euclidean_pearson
-      value: 63.652564812602094
-    - type: euclidean_spearman
-      value: 62.64811520876156
-    - type: manhattan_pearson
-      value: 63.506842893061076
-    - type: manhattan_spearman
-      value: 62.51289573046917
+    - type: accuracy
+      value: 97.39999999999999
+    - type: f1
+      value: 96.75
+    - type: precision
+      value: 96.45
+    - type: recall
+      value: 97.39999999999999
   - task:
-      type: STS
+      type: BitextMining
     dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (de)
-      config: de
+      type: mteb/tatoeba-bitext-mining
+      name: MTEB Tatoeba (fry-eng)
+      config: fry-eng
       split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 48.2248801729127
-    - type: cos_sim_spearman
-      value: 56.5936604678561
-    - type: euclidean_pearson
-      value: 43.98149464089
-    - type: euclidean_spearman
-      value: 56.108561882423615
-    - type: manhattan_pearson
-      value: 43.86880305903564
-    - type: manhattan_spearman
-      value: 56.04671150510166
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (es)
-      config: es
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 55.17564527009831
-    - type: cos_sim_spearman
-      value: 64.57978560979488
-    - type: euclidean_pearson
-      value: 58.8818330154583
-    - type: euclidean_spearman
-      value: 64.99214839071281
-    - type: manhattan_pearson
-      value: 58.72671436121381
-    - type: manhattan_spearman
-      value: 65.10713416616109
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (pl)
-      config: pl
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 26.772131864023297
-    - type: cos_sim_spearman
-      value: 34.68200792408681
-    - type: euclidean_pearson
-      value: 16.68082419005441
-    - type: euclidean_spearman
-      value: 34.83099932652166
-    - type: manhattan_pearson
-      value: 16.52605949659529
-    - type: manhattan_spearman
-      value: 34.82075801399475
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (tr)
-      config: tr
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 54.42415189043831
-    - type: cos_sim_spearman
-      value: 63.54594264576758
-    - type: euclidean_pearson
-      value: 57.36577498297745
-    - type: euclidean_spearman
-      value: 63.111466379158074
-    - type: manhattan_pearson
-      value: 57.584543715873885
-    - type: manhattan_spearman
-      value: 63.22361054139183
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (ar)
-      config: ar
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 47.55216762405518
-    - type: cos_sim_spearman
-      value: 56.98670142896412
-    - type: euclidean_pearson
-      value: 50.15318757562699
-    - type: euclidean_spearman
-      value: 56.524941926541906
-    - type: manhattan_pearson
-      value: 49.955618528674904
-    - type: manhattan_spearman
-      value: 56.37102209240117
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (ru)
-      config: ru
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 49.20540980338571
-    - type: cos_sim_spearman
-      value: 59.9009453504406
-    - type: euclidean_pearson
-      value: 49.557749853620535
-    - type: euclidean_spearman
-      value: 59.76631621172456
-    - type: manhattan_pearson
-      value: 49.62340591181147
-    - type: manhattan_spearman
-      value: 59.94224880322436
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (zh)
-      config: zh
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 51.508169956576985
-    - type: cos_sim_spearman
-      value: 66.82461565306046
-    - type: euclidean_pearson
-      value: 56.2274426480083
-    - type: euclidean_spearman
-      value: 66.6775323848333
-    - type: manhattan_pearson
-      value: 55.98277796300661
-    - type: manhattan_spearman
-      value: 66.63669848497175
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (fr)
-      config: fr
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 72.86478788045507
-    - type: cos_sim_spearman
-      value: 76.7946552053193
-    - type: euclidean_pearson
-      value: 75.01598530490269
-    - type: euclidean_spearman
-      value: 76.83618917858281
-    - type: manhattan_pearson
-      value: 74.68337628304332
-    - type: manhattan_spearman
-      value: 76.57480204017773
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (de-en)
-      config: de-en
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 55.922619099401984
-    - type: cos_sim_spearman
-      value: 56.599362477240774
-    - type: euclidean_pearson
-      value: 56.68307052369783
-    - type: euclidean_spearman
-      value: 54.28760436777401
-    - type: manhattan_pearson
-      value: 56.67763566500681
-    - type: manhattan_spearman
-      value: 53.94619541711359
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (es-en)
-      config: es-en
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 66.74357206710913
-    - type: cos_sim_spearman
-      value: 72.5208244925311
-    - type: euclidean_pearson
-      value: 67.49254562186032
-    - type: euclidean_spearman
-      value: 72.02469076238683
-    - type: manhattan_pearson
-      value: 67.45251772238085
-    - type: manhattan_spearman
-      value: 72.05538819984538
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (it)
-      config: it
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 71.25734330033191
-    - type: cos_sim_spearman
-      value: 76.98349083946823
-    - type: euclidean_pearson
-      value: 73.71642838667736
-    - type: euclidean_spearman
-      value: 77.01715504651384
-    - type: manhattan_pearson
-      value: 73.61712711868105
-    - type: manhattan_spearman
-      value: 77.01392571153896
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (pl-en)
-      config: pl-en
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 63.18215462781212
-    - type: cos_sim_spearman
-      value: 65.54373266117607
-    - type: euclidean_pearson
-      value: 64.54126095439005
-    - type: euclidean_spearman
-      value: 65.30410369102711
-    - type: manhattan_pearson
-      value: 63.50332221148234
-    - type: manhattan_spearman
-      value: 64.3455878104313
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (zh-en)
-      config: zh-en
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 62.30509221440029
-    - type: cos_sim_spearman
-      value: 65.99582704642478
-    - type: euclidean_pearson
-      value: 63.43818859884195
-    - type: euclidean_spearman
-      value: 66.83172582815764
-    - type: manhattan_pearson
-      value: 63.055779168508764
-    - type: manhattan_spearman
-      value: 65.49585020501449
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (es-it)
-      config: es-it
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 59.587830825340404
-    - type: cos_sim_spearman
-      value: 68.93467614588089
-    - type: euclidean_pearson
-      value: 62.3073527367404
-    - type: euclidean_spearman
-      value: 69.69758171553175
-    - type: manhattan_pearson
-      value: 61.9074580815789
-    - type: manhattan_spearman
-      value: 69.57696375597865
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (de-fr)
-      config: de-fr
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 57.143220125577066
-    - type: cos_sim_spearman
-      value: 67.78857859159226
-    - type: euclidean_pearson
-      value: 55.58225107923733
-    - type: euclidean_spearman
-      value: 67.80662907184563
-    - type: manhattan_pearson
-      value: 56.24953502726514
-    - type: manhattan_spearman
-      value: 67.98262125431616
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (de-pl)
-      config: de-pl
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 21.826928900322066
-    - type: cos_sim_spearman
-      value: 49.578506634400405
-    - type: euclidean_pearson
-      value: 27.939890138843214
-    - type: euclidean_spearman
-      value: 52.71950519136242
-    - type: manhattan_pearson
-      value: 26.39878683847546
-    - type: manhattan_spearman
-      value: 47.54609580342499
-  - task:
-      type: STS
-    dataset:
-      type: mteb/sts22-crosslingual-sts
-      name: MTEB STS22 (fr-pl)
-      config: fr-pl
-      split: test
-      revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
-    metrics:
-    - type: cos_sim_pearson
-      value: 57.27603854632001
-    - type: cos_sim_spearman
-      value: 50.709255283710995
-    - type: euclidean_pearson
-      value: 59.5419024445929
-    - type: euclidean_spearman
-      value: 50.709255283710995
-    - type: manhattan_pearson
-      value: 59.03256832438492
-    - type: manhattan_spearman
-      value: 61.97797868009122
-  - task:
-      type: STS
-    dataset:
-      type: mteb/stsbenchmark-sts
-      name: MTEB STSBenchmark
-      config: default
-      split: test
-      revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
-    metrics:
-    - type: cos_sim_pearson
-      value: 85.00757054859712
-    - type: cos_sim_spearman
-      value: 87.29283629622222
-    - type: euclidean_pearson
-      value: 86.54824171775536
-    - type: euclidean_spearman
-      value: 87.24364730491402
-    - type: manhattan_pearson
-      value: 86.5062156915074
-    - type: manhattan_spearman
-      value: 87.15052170378574
-  - task:
-      type: Reranking
-    dataset:
-      type: mteb/scidocs-reranking
-      name: MTEB SciDocsRR
-      config: default
-      split: test
-      revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
-    metrics:
-    - type: map
-      value: 82.03549357197389
-    - type: mrr
-      value: 95.05437645143527
-  - task:
-      type: Retrieval
-    dataset:
-      type: scifact
-      name: MTEB SciFact
-      config: default
-      split: test
-      revision: None
-    metrics:
-    - type: map_at_1
-      value: 57.260999999999996
-    - type: map_at_10
-      value: 66.259
-    - type: map_at_100
-      value: 66.884
-    - type: map_at_1000
-      value: 66.912
-    - type: map_at_3
-      value: 63.685
-    - type: map_at_5
-      value: 65.35499999999999
-    - type: mrr_at_1
-      value: 60.333000000000006
-    - type: mrr_at_10
-      value: 67.5
-    - type: mrr_at_100
-      value: 68.013
-    - type: mrr_at_1000
-      value: 68.038
-    - type: mrr_at_3
-      value: 65.61099999999999
-    - type: mrr_at_5
-      value: 66.861
-    - type: ndcg_at_1
-      value: 60.333000000000006
-    - type: ndcg_at_10
-      value: 70.41
-    - type: ndcg_at_100
-      value: 73.10600000000001
-    - type: ndcg_at_1000
-      value: 73.846
-    - type: ndcg_at_3
-      value: 66.133
-    - type: ndcg_at_5
-      value: 68.499
-    - type: precision_at_1
-      value: 60.333000000000006
-    - type: precision_at_10
-      value: 9.232999999999999
-    - type: precision_at_100
-      value: 1.0630000000000002
-    - type: precision_at_1000
-      value: 0.11299999999999999
-    - type: precision_at_3
-      value: 25.667
-    - type: precision_at_5
-      value: 17.067
-    - type: recall_at_1
-      value: 57.260999999999996
-    - type: recall_at_10
-      value: 81.94399999999999
-    - type: recall_at_100
-      value: 93.867
-    - type: recall_at_1000
-      value: 99.667
-    - type: recall_at_3
-      value: 70.339
-    - type: recall_at_5
-      value: 76.25
-  - task:
-      type: PairClassification
-    dataset:
-      type: mteb/sprintduplicatequestions-pairclassification
-      name: MTEB SprintDuplicateQuestions
-      config: default
-      split: test
-      revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
-    metrics:
-    - type: cos_sim_accuracy
-      value: 99.74356435643564
-    - type: cos_sim_ap
-      value: 93.13411948212683
-    - type: cos_sim_f1
-      value: 86.80521991300147
-    - type: cos_sim_precision
-      value: 84.00374181478017
-    - type: cos_sim_recall
-      value: 89.8
-    - type: dot_accuracy
-      value: 99.67920792079208
-    - type: dot_ap
-      value: 89.27277565444479
-    - type: dot_f1
-      value: 83.9276990718124
-    - type: dot_precision
-      value: 82.04393505253104
-    - type: dot_recall
-      value: 85.9
-    - type: euclidean_accuracy
-      value: 99.74257425742574
-    - type: euclidean_ap
-      value: 93.17993008259062
-    - type: euclidean_f1
-      value: 86.69396110542476
-    - type: euclidean_precision
-      value: 88.78406708595388
-    - type: euclidean_recall
-      value: 84.7
-    - type: manhattan_accuracy
-      value: 99.74257425742574
-    - type: manhattan_ap
-      value: 93.14413755550099
-    - type: manhattan_f1
-      value: 86.82483594144371
-    - type: manhattan_precision
-      value: 87.66564729867483
-    - type: manhattan_recall
-      value: 86
-    - type: max_accuracy
-      value: 99.74356435643564
-    - type: max_ap
-      value: 93.17993008259062
-    - type: max_f1
-      value: 86.82483594144371
-  - task:
-      type: Clustering
-    dataset:
-      type: mteb/stackexchange-clustering
-      name: MTEB StackExchangeClustering
-      config: default
-      split: test
-      revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
-    metrics:
-    - type: v_measure
-      value: 57.525863806168566
-  - task:
-      type: Clustering
-    dataset:
-      type: mteb/stackexchange-clustering-p2p
-      name: MTEB StackExchangeClusteringP2P
-      config: default
-      split: test
-      revision: 815ca46b2622cec33ccafc3735d572c266efdb44
-    metrics:
-    - type: v_measure
-      value: 32.68850574423839
-  - task:
-      type: Reranking
-    dataset:
-      type: mteb/stackoverflowdupquestions-reranking
-      name: MTEB StackOverflowDupQuestions
-      config: default
-      split: test
-      revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
-    metrics:
-    - type: map
-      value: 49.71580650644033
-    - type: mrr
-      value: 50.50971903913081
-  - task:
-      type: Summarization
-    dataset:
-      type: mteb/summeval
-      name: MTEB SummEval
-      config: default
-      split: test
-      revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
-    metrics:
-    - type: cos_sim_pearson
-      value: 29.152190498799484
-    - type: cos_sim_spearman
-      value: 29.686180371952727
-    - type: dot_pearson
-      value: 27.248664793816342
-    - type: dot_spearman
-      value: 28.37748983721745
-  - task:
-      type: Retrieval
-    dataset:
-      type: trec-covid
-      name: MTEB TRECCOVID
-      config: default
-      split: test
-      revision: None
-    metrics:
-    - type: map_at_1
-      value: 0.20400000000000001
-    - type: map_at_10
-      value: 1.6209999999999998
-    - type: map_at_100
-      value: 9.690999999999999
-    - type: map_at_1000
-      value: 23.733
-    - type: map_at_3
-      value: 0.575
-    - type: map_at_5
-      value: 0.885
-    - type: mrr_at_1
-      value: 78
-    - type: mrr_at_10
-      value: 86.56700000000001
-    - type: mrr_at_100
-      value: 86.56700000000001
-    - type: mrr_at_1000
-      value: 86.56700000000001
-    - type: mrr_at_3
-      value: 85.667
-    - type: mrr_at_5
-      value: 86.56700000000001
-    - type: ndcg_at_1
-      value: 76
-    - type: ndcg_at_10
-      value: 71.326
-    - type: ndcg_at_100
-      value: 54.208999999999996
-    - type: ndcg_at_1000
-      value: 49.252
-    - type: ndcg_at_3
-      value: 74.235
-    - type: ndcg_at_5
-      value: 73.833
-    - type: precision_at_1
-      value: 78
-    - type: precision_at_10
-      value: 74.8
-    - type: precision_at_100
-      value: 55.50000000000001
-    - type: precision_at_1000
-      value: 21.836
-    - type: precision_at_3
-      value: 78
-    - type: precision_at_5
-      value: 78
-    - type: recall_at_1
-      value: 0.20400000000000001
-    - type: recall_at_10
-      value: 1.894
-    - type: recall_at_100
-      value: 13.245999999999999
-    - type: recall_at_1000
-      value: 46.373
-    - type: recall_at_3
-      value: 0.613
-    - type: recall_at_5
-      value: 0.991
-  - task:
-      type: BitextMining
-    dataset:
-      type: mteb/tatoeba-bitext-mining
-      name: MTEB Tatoeba (sqi-eng)
-      config: sqi-eng
-      split: test
-      revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
-    metrics:
-    - type: accuracy
-      value: 95.89999999999999
-    - type: f1
-      value: 94.69999999999999
-    - type: precision
-      value: 94.11666666666667
-    - type: recall
-      value: 95.89999999999999
-  - task:
-      type: BitextMining
-    dataset:
-      type: mteb/tatoeba-bitext-mining
-      name: MTEB Tatoeba (fry-eng)
-      config: fry-eng
-      split: test
-      revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
+      revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 68.20809248554913
+      value: 85.54913294797689
     - type: f1
-      value: 63.431048720066066
+      value: 82.46628131021194
     - type: precision
-      value: 61.69143958161298
+      value: 81.1175337186898
     - type: recall
-      value: 68.20809248554913
+      value: 85.54913294797689
   - task:
       type: BitextMining
     dataset:
@@ -3773,13 +3204,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 71.21951219512195
+      value: 81.21951219512195
     - type: f1
-      value: 66.82926829268293
+      value: 77.33333333333334
     - type: precision
-      value: 65.1260162601626
+      value: 75.54878048780488
     - type: recall
-      value: 71.21951219512195
+      value: 81.21951219512195
   - task:
       type: BitextMining
     dataset:
@@ -3790,13 +3221,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 97.2
+      value: 98.6
     - type: f1
-      value: 96.26666666666667
+      value: 98.26666666666665
     - type: precision
-      value: 95.8
+      value: 98.1
     - type: recall
-      value: 97.2
+      value: 98.6
   - task:
       type: BitextMining
     dataset:
@@ -3807,13 +3238,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 99.3
+      value: 99.5
     - type: f1
-      value: 99.06666666666666
+      value: 99.33333333333333
     - type: precision
-      value: 98.95
+      value: 99.25
     - type: recall
-      value: 99.3
+      value: 99.5
   - task:
       type: BitextMining
     dataset:
@@ -3824,13 +3255,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 97.39999999999999
+      value: 97.8
     - type: f1
-      value: 96.63333333333333
+      value: 97.2
     - type: precision
-      value: 96.26666666666668
+      value: 96.89999999999999
     - type: recall
-      value: 97.39999999999999
+      value: 97.8
   - task:
       type: BitextMining
     dataset:
@@ -3841,13 +3272,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 96
+      value: 97.8
     - type: f1
-      value: 94.86666666666666
+      value: 97.18333333333334
     - type: precision
-      value: 94.31666666666668
+      value: 96.88333333333333
     - type: recall
-      value: 96
+      value: 97.8
   - task:
       type: BitextMining
     dataset:
@@ -3858,13 +3289,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 47.01492537313433
+      value: 77.61194029850746
     - type: f1
-      value: 40.178867566927266
+      value: 72.81094527363183
     - type: precision
-      value: 38.179295828549556
+      value: 70.83333333333333
     - type: recall
-      value: 47.01492537313433
+      value: 77.61194029850746
   - task:
       type: BitextMining
     dataset:
@@ -3875,13 +3306,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 86.5
+      value: 93.7
     - type: f1
-      value: 83.62537480063796
+      value: 91.91666666666667
     - type: precision
-      value: 82.44555555555554
+      value: 91.08333333333334
     - type: recall
-      value: 86.5
+      value: 93.7
   - task:
       type: BitextMining
     dataset:
@@ -3892,13 +3323,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 80.48780487804879
+      value: 88.29268292682927
     - type: f1
-      value: 75.45644599303138
+      value: 85.27642276422765
     - type: precision
-      value: 73.37398373983739
+      value: 84.01277584204414
     - type: recall
-      value: 80.48780487804879
+      value: 88.29268292682927
   - task:
       type: BitextMining
     dataset:
@@ -3909,13 +3340,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 93.7
+      value: 96.1
     - type: f1
-      value: 91.95666666666666
+      value: 95.0
     - type: precision
-      value: 91.125
+      value: 94.46666666666668
     - type: recall
-      value: 93.7
+      value: 96.1
   - task:
       type: BitextMining
     dataset:
@@ -3926,13 +3357,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 91.73754556500607
+      value: 93.681652490887
     - type: f1
-      value: 89.65168084244632
+      value: 91.90765492102065
     - type: precision
-      value: 88.73025516403402
+      value: 91.05913325232888
     - type: recall
-      value: 91.73754556500607
+      value: 93.681652490887
   - task:
       type: BitextMining
     dataset:
@@ -3943,13 +3374,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 81.04347826086956
+      value: 92.17391304347827
     - type: f1
-      value: 76.2128364389234
+      value: 89.97101449275361
     - type: precision
-      value: 74.2
+      value: 88.96811594202899
     - type: recall
-      value: 81.04347826086956
+      value: 92.17391304347827
   - task:
       type: BitextMining
     dataset:
@@ -3960,13 +3391,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 83.65217391304348
+      value: 90.43478260869566
     - type: f1
-      value: 79.4376811594203
+      value: 87.72173913043478
     - type: precision
-      value: 77.65797101449274
+      value: 86.42028985507245
     - type: recall
-      value: 83.65217391304348
+      value: 90.43478260869566
   - task:
       type: BitextMining
     dataset:
@@ -3977,13 +3408,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 87.5
+      value: 90.4
     - type: f1
-      value: 85.02690476190476
+      value: 88.03
     - type: precision
-      value: 83.96261904761904
+      value: 86.95
     - type: recall
-      value: 87.5
+      value: 90.4
   - task:
       type: BitextMining
     dataset:
@@ -3994,13 +3425,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 89.3
+      value: 93.4
     - type: f1
-      value: 86.52333333333333
+      value: 91.45666666666666
     - type: precision
-      value: 85.22833333333332
+      value: 90.525
     - type: recall
-      value: 89.3
+      value: 93.4
   - task:
       type: BitextMining
     dataset:
@@ -4011,13 +3442,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 65.01809408926418
+      value: 81.9059107358263
     - type: f1
-      value: 59.00594446432805
+      value: 78.32557872364869
     - type: precision
-      value: 56.827215807915444
+      value: 76.78260286824823
     - type: recall
-      value: 65.01809408926418
+      value: 81.9059107358263
   - task:
       type: BitextMining
     dataset:
@@ -4028,13 +3459,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 91.2
+      value: 94.3
     - type: f1
-      value: 88.58
+      value: 92.58333333333333
     - type: precision
-      value: 87.33333333333334
+      value: 91.73333333333332
     - type: recall
-      value: 91.2
+      value: 94.3
   - task:
       type: BitextMining
     dataset:
@@ -4045,13 +3476,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 59.199999999999996
+      value: 79.10000000000001
     - type: f1
-      value: 53.299166276284915
+      value: 74.50500000000001
     - type: precision
-      value: 51.3383908045977
+      value: 72.58928571428571
     - type: recall
-      value: 59.199999999999996
+      value: 79.10000000000001
   - task:
       type: BitextMining
     dataset:
@@ -4062,13 +3493,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 93.2
+      value: 96.6
     - type: f1
-      value: 91.2
+      value: 95.55
     - type: precision
-      value: 90.25
+      value: 95.05
     - type: recall
-      value: 93.2
+      value: 96.6
   - task:
       type: BitextMining
     dataset:
@@ -4079,13 +3510,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 64.76190476190476
+      value: 82.0952380952381
     - type: f1
-      value: 59.867110667110666
+      value: 77.98458049886621
     - type: precision
-      value: 58.07390192653351
+      value: 76.1968253968254
     - type: recall
-      value: 64.76190476190476
+      value: 82.0952380952381
   - task:
       type: BitextMining
     dataset:
@@ -4096,13 +3527,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 76.2
+      value: 87.9
     - type: f1
-      value: 71.48147546897547
+      value: 84.99190476190476
     - type: precision
-      value: 69.65409090909091
+      value: 83.65
     - type: recall
-      value: 76.2
+      value: 87.9
   - task:
       type: BitextMining
     dataset:
@@ -4113,13 +3544,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 93.8
+      value: 95.7
     - type: f1
-      value: 92.14
+      value: 94.56666666666666
     - type: precision
-      value: 91.35833333333333
+      value: 94.01666666666667
     - type: recall
-      value: 93.8
+      value: 95.7
   - task:
       type: BitextMining
     dataset:
@@ -4130,13 +3561,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 97.89999999999999
+      value: 98.6
     - type: f1
-      value: 97.2
+      value: 98.2
     - type: precision
-      value: 96.85000000000001
+      value: 98.0
     - type: recall
-      value: 97.89999999999999
+      value: 98.6
   - task:
       type: BitextMining
     dataset:
@@ -4147,13 +3578,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 94.6
+      value: 95.6
     - type: f1
-      value: 92.93333333333334
+      value: 94.38333333333334
     - type: precision
-      value: 92.13333333333333
+      value: 93.78333333333335
     - type: recall
-      value: 94.6
+      value: 95.6
   - task:
       type: BitextMining
     dataset:
@@ -4164,13 +3595,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 74.1
+      value: 87.4
     - type: f1
-      value: 69.14817460317461
+      value: 84.10380952380952
     - type: precision
-      value: 67.2515873015873
+      value: 82.67
     - type: recall
-      value: 74.1
+      value: 87.4
   - task:
       type: BitextMining
     dataset:
@@ -4181,13 +3612,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 95.19999999999999
+      value: 95.5
     - type: f1
-      value: 94.01333333333335
+      value: 94.33333333333334
     - type: precision
-      value: 93.46666666666667
+      value: 93.78333333333333
     - type: recall
-      value: 95.19999999999999
+      value: 95.5
   - task:
       type: BitextMining
     dataset:
@@ -4198,13 +3629,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 76.9
+      value: 89.4
     - type: f1
-      value: 72.07523809523809
+      value: 86.82000000000001
     - type: precision
-      value: 70.19777777777779
+      value: 85.64500000000001
     - type: recall
-      value: 76.9
+      value: 89.4
   - task:
       type: BitextMining
     dataset:
@@ -4215,13 +3646,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 94.1
+      value: 95.1
     - type: f1
-      value: 92.31666666666666
+      value: 93.56666666666668
     - type: precision
-      value: 91.43333333333332
+      value: 92.81666666666666
     - type: recall
-      value: 94.1
+      value: 95.1
   - task:
       type: BitextMining
     dataset:
@@ -4232,13 +3663,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 97.8
+      value: 98.9
     - type: f1
-      value: 97.1
+      value: 98.6
     - type: precision
-      value: 96.76666666666668
+      value: 98.45
     - type: recall
-      value: 97.8
+      value: 98.9
   - task:
       type: BitextMining
     dataset:
@@ -4249,13 +3680,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 92.85714285714286
+      value: 95.01347708894879
     - type: f1
-      value: 90.92093441150045
+      value: 93.51752021563343
     - type: precision
-      value: 90.00449236298293
+      value: 92.82794249775381
     - type: recall
-      value: 92.85714285714286
+      value: 95.01347708894879
   - task:
       type: BitextMining
     dataset:
@@ -4266,13 +3697,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 93.16239316239316
+      value: 97.00854700854701
     - type: f1
-      value: 91.33903133903132
+      value: 96.08262108262107
     - type: precision
-      value: 90.56267806267806
+      value: 95.65527065527067
     - type: recall
-      value: 93.16239316239316
+      value: 97.00854700854701
   - task:
       type: BitextMining
     dataset:
@@ -4283,13 +3714,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 92.4
+      value: 96.5
     - type: f1
-      value: 90.25666666666666
+      value: 95.39999999999999
     - type: precision
-      value: 89.25833333333334
+      value: 94.88333333333333
     - type: recall
-      value: 92.4
+      value: 96.5
   - task:
       type: BitextMining
     dataset:
@@ -4300,13 +3731,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 90.22727272727272
+      value: 96.5909090909091
     - type: f1
-      value: 87.53030303030303
+      value: 95.49242424242425
     - type: precision
-      value: 86.37121212121211
+      value: 94.9621212121212
     - type: recall
-      value: 90.22727272727272
+      value: 96.5909090909091
   - task:
       type: BitextMining
     dataset:
@@ -4317,13 +3748,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 79.03563941299791
+      value: 84.90566037735849
     - type: f1
-      value: 74.7349505840072
+      value: 81.85883997204752
     - type: precision
-      value: 72.9035639412998
+      value: 80.54507337526205
     - type: recall
-      value: 79.03563941299791
+      value: 84.90566037735849
   - task:
       type: BitextMining
     dataset:
@@ -4334,13 +3765,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 97
+      value: 97.5
     - type: f1
-      value: 96.15
+      value: 96.75
     - type: precision
-      value: 95.76666666666668
+      value: 96.38333333333333
     - type: recall
-      value: 97
+      value: 97.5
   - task:
       type: BitextMining
     dataset:
@@ -4351,13 +3782,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 76.26459143968872
+      value: 86.7704280155642
     - type: f1
-      value: 71.55642023346303
+      value: 82.99610894941635
     - type: precision
-      value: 69.7544932369835
+      value: 81.32295719844358
     - type: recall
-      value: 76.26459143968872
+      value: 86.7704280155642
   - task:
       type: BitextMining
     dataset:
@@ -4368,13 +3799,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 58.119658119658126
+      value: 67.52136752136752
     - type: f1
-      value: 51.65242165242165
+      value: 61.89662189662191
     - type: precision
-      value: 49.41768108434775
+      value: 59.68660968660969
     - type: recall
-      value: 58.119658119658126
+      value: 67.52136752136752
   - task:
       type: BitextMining
     dataset:
@@ -4385,13 +3816,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 74.3
+      value: 89.2
     - type: f1
-      value: 69.52055555555555
+      value: 86.32
     - type: precision
-      value: 67.7574938949939
+      value: 85.015
     - type: recall
-      value: 74.3
+      value: 89.2
   - task:
       type: BitextMining
     dataset:
@@ -4402,13 +3833,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 94.8
+      value: 96.0
     - type: f1
-      value: 93.31666666666666
+      value: 94.78333333333333
     - type: precision
-      value: 92.60000000000001
+      value: 94.18333333333334
     - type: recall
-      value: 94.8
+      value: 96.0
   - task:
       type: BitextMining
     dataset:
@@ -4419,13 +3850,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 76.63551401869158
+      value: 83.8785046728972
     - type: f1
-      value: 72.35202492211837
+      value: 80.54517133956385
     - type: precision
-      value: 70.60358255451713
+      value: 79.154984423676
     - type: recall
-      value: 76.63551401869158
+      value: 83.8785046728972
   - task:
       type: BitextMining
     dataset:
@@ -4436,13 +3867,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 90.4
+      value: 93.60000000000001
     - type: f1
-      value: 88.4811111111111
+      value: 92.01333333333334
     - type: precision
-      value: 87.7452380952381
+      value: 91.28333333333333
     - type: recall
-      value: 90.4
+      value: 93.60000000000001
   - task:
       type: BitextMining
     dataset:
@@ -4453,13 +3884,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 95
+      value: 97.1
     - type: f1
-      value: 93.60666666666667
+      value: 96.26666666666667
     - type: precision
-      value: 92.975
+      value: 95.85000000000001
     - type: recall
-      value: 95
+      value: 97.1
   - task:
       type: BitextMining
     dataset:
@@ -4470,13 +3901,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 67.2
+      value: 84.3
     - type: f1
-      value: 63.01595782872099
+      value: 80.67833333333333
     - type: precision
-      value: 61.596587301587306
+      value: 79.03928571428571
     - type: recall
-      value: 67.2
+      value: 84.3
   - task:
       type: BitextMining
     dataset:
@@ -4487,13 +3918,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 95.7
+      value: 97.3
     - type: f1
-      value: 94.52999999999999
+      value: 96.48333333333332
     - type: precision
-      value: 94
+      value: 96.08333333333331
     - type: recall
-      value: 95.7
+      value: 97.3
   - task:
       type: BitextMining
     dataset:
@@ -4504,13 +3935,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 94.6
+      value: 95.7
     - type: f1
-      value: 93.28999999999999
+      value: 94.66666666666667
     - type: precision
-      value: 92.675
+      value: 94.16666666666667
     - type: recall
-      value: 94.6
+      value: 95.7
   - task:
       type: BitextMining
     dataset:
@@ -4521,13 +3952,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 96.39999999999999
+      value: 97.2
     - type: f1
-      value: 95.28333333333333
+      value: 96.36666666666667
     - type: precision
-      value: 94.75
+      value: 95.96666666666668
     - type: recall
-      value: 96.39999999999999
+      value: 97.2
   - task:
       type: BitextMining
     dataset:
@@ -4538,13 +3969,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 91.9
+      value: 94.3
     - type: f1
-      value: 89.83
+      value: 92.80666666666667
     - type: precision
-      value: 88.92
+      value: 92.12833333333333
     - type: recall
-      value: 91.9
+      value: 94.3
   - task:
       type: BitextMining
     dataset:
@@ -4555,13 +3986,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 94.69999999999999
+      value: 97.0
     - type: f1
-      value: 93.34222222222223
+      value: 96.22333333333334
     - type: precision
-      value: 92.75416666666668
+      value: 95.875
     - type: recall
-      value: 94.69999999999999
+      value: 97.0
   - task:
       type: BitextMining
     dataset:
@@ -4572,13 +4003,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 60.333333333333336
+      value: 74.33333333333333
     - type: f1
-      value: 55.31203703703703
+      value: 70.78174603174602
     - type: precision
-      value: 53.39971108326371
+      value: 69.28333333333332
     - type: recall
-      value: 60.333333333333336
+      value: 74.33333333333333
   - task:
       type: BitextMining
     dataset:
@@ -4589,13 +4020,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 12.9
+      value: 37.6
     - type: f1
-      value: 11.099861903031458
+      value: 32.938348952090365
     - type: precision
-      value: 10.589187932631877
+      value: 31.2811038961039
     - type: recall
-      value: 12.9
+      value: 37.6
   - task:
       type: BitextMining
     dataset:
@@ -4606,13 +4037,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 86.7
+      value: 91.5
     - type: f1
-      value: 83.0152380952381
+      value: 89.13333333333333
     - type: precision
-      value: 81.37833333333333
+      value: 88.03333333333333
     - type: recall
-      value: 86.7
+      value: 91.5
   - task:
       type: BitextMining
     dataset:
@@ -4623,13 +4054,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 63.39285714285714
+      value: 82.14285714285714
     - type: f1
-      value: 56.832482993197274
+      value: 77.67857142857143
     - type: precision
-      value: 54.56845238095237
+      value: 75.59523809523809
     - type: recall
-      value: 63.39285714285714
+      value: 82.14285714285714
   - task:
       type: BitextMining
     dataset:
@@ -4640,13 +4071,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 48.73765093304062
+      value: 69.0450054884742
     - type: f1
-      value: 41.555736920720456
+      value: 63.070409283362075
     - type: precision
-      value: 39.06874531737319
+      value: 60.58992781824835
     - type: recall
-      value: 48.73765093304062
+      value: 69.0450054884742
   - task:
       type: BitextMining
     dataset:
@@ -4657,13 +4088,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 41.099999999999994
+      value: 63.1
     - type: f1
-      value: 36.540165945165946
+      value: 57.848333333333336
     - type: precision
-      value: 35.05175685425686
+      value: 55.69500000000001
     - type: recall
-      value: 41.099999999999994
+      value: 63.1
   - task:
       type: BitextMining
     dataset:
@@ -4674,13 +4105,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 94.89999999999999
+      value: 96.1
     - type: f1
-      value: 93.42333333333333
+      value: 95.01666666666667
     - type: precision
-      value: 92.75833333333333
+      value: 94.5
     - type: recall
-      value: 94.89999999999999
+      value: 96.1
   - task:
       type: BitextMining
     dataset:
@@ -4691,13 +4122,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 94.89999999999999
+      value: 95.89999999999999
     - type: f1
-      value: 93.63333333333334
+      value: 94.90666666666667
     - type: precision
-      value: 93.01666666666665
+      value: 94.425
     - type: recall
-      value: 94.89999999999999
+      value: 95.89999999999999
   - task:
       type: BitextMining
     dataset:
@@ -4708,13 +4139,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 77.9
+      value: 87.6
     - type: f1
-      value: 73.64833333333334
+      value: 84.61333333333333
     - type: precision
-      value: 71.90282106782105
+      value: 83.27
     - type: recall
-      value: 77.9
+      value: 87.6
   - task:
       type: BitextMining
     dataset:
@@ -4725,13 +4156,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 59.4
+      value: 76.4
     - type: f1
-      value: 54.90521367521367
+      value: 71.90746031746032
     - type: precision
-      value: 53.432840025471606
+      value: 70.07027777777778
     - type: recall
-      value: 59.4
+      value: 76.4
   - task:
       type: BitextMining
     dataset:
@@ -4742,13 +4173,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 97.39999999999999
+      value: 97.89999999999999
     - type: f1
-      value: 96.6
+      value: 97.26666666666667
     - type: precision
-      value: 96.2
+      value: 96.95
     - type: recall
-      value: 97.39999999999999
+      value: 97.89999999999999
   - task:
       type: BitextMining
     dataset:
@@ -4759,13 +4190,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 67.2
+      value: 78.8
     - type: f1
-      value: 62.25926129426129
+      value: 74.39555555555555
     - type: precision
-      value: 60.408376623376626
+      value: 72.59416666666667
     - type: recall
-      value: 67.2
+      value: 78.8
   - task:
       type: BitextMining
     dataset:
@@ -4776,13 +4207,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 90.2
+      value: 95.19999999999999
     - type: f1
-      value: 87.60666666666667
+      value: 93.78999999999999
     - type: precision
-      value: 86.45277777777778
+      value: 93.125
     - type: recall
-      value: 90.2
+      value: 95.19999999999999
   - task:
       type: BitextMining
     dataset:
@@ -4793,13 +4224,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 97.7
+      value: 97.8
     - type: f1
-      value: 97
+      value: 97.1
     - type: precision
-      value: 96.65
+      value: 96.75
     - type: recall
-      value: 97.7
+      value: 97.8
   - task:
       type: BitextMining
     dataset:
@@ -4810,13 +4241,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 93.2
+      value: 95.6
     - type: f1
-      value: 91.39746031746031
+      value: 94.25666666666666
     - type: precision
-      value: 90.6125
+      value: 93.64166666666668
     - type: recall
-      value: 93.2
+      value: 95.6
   - task:
       type: BitextMining
     dataset:
@@ -4827,13 +4258,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 32.11678832116788
+      value: 56.934306569343065
     - type: f1
-      value: 27.210415386260234
+      value: 51.461591936044485
     - type: precision
-      value: 26.20408990846947
+      value: 49.37434827945776
     - type: recall
-      value: 32.11678832116788
+      value: 56.934306569343065
   - task:
       type: BitextMining
     dataset:
@@ -4844,13 +4275,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 8.5
+      value: 20.200000000000003
     - type: f1
-      value: 6.787319277832475
+      value: 16.91799284049284
     - type: precision
-      value: 6.3452094433344435
+      value: 15.791855158730158
     - type: recall
-      value: 8.5
+      value: 20.200000000000003
   - task:
       type: BitextMining
     dataset:
@@ -4861,13 +4292,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 96.1
+      value: 96.2
     - type: f1
-      value: 95.08
+      value: 95.3
     - type: precision
-      value: 94.61666666666667
+      value: 94.85
     - type: recall
-      value: 96.1
+      value: 96.2
   - task:
       type: BitextMining
     dataset:
@@ -4878,13 +4309,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 95.3
+      value: 96.3
     - type: f1
-      value: 93.88333333333333
+      value: 95.11666666666667
     - type: precision
-      value: 93.18333333333332
+      value: 94.53333333333333
     - type: recall
-      value: 95.3
+      value: 96.3
   - task:
       type: BitextMining
     dataset:
@@ -4895,13 +4326,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 85.11904761904762
+      value: 89.88095238095238
     - type: f1
-      value: 80.69444444444444
+      value: 87.14285714285714
     - type: precision
-      value: 78.72023809523809
+      value: 85.96230158730161
     - type: recall
-      value: 85.11904761904762
+      value: 89.88095238095238
   - task:
       type: BitextMining
     dataset:
@@ -4912,13 +4343,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 11.1
+      value: 24.099999999999998
     - type: f1
-      value: 9.276381801735853
+      value: 19.630969083349783
     - type: precision
-      value: 8.798174603174601
+      value: 18.275094905094907
     - type: recall
-      value: 11.1
+      value: 24.099999999999998
   - task:
       type: BitextMining
     dataset:
@@ -4929,13 +4360,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 63.56107660455487
+      value: 83.4368530020704
     - type: f1
-      value: 58.70433569191332
+      value: 79.45183870649709
     - type: precision
-      value: 56.896926581464015
+      value: 77.7432712215321
     - type: recall
-      value: 63.56107660455487
+      value: 83.4368530020704
   - task:
       type: BitextMining
     dataset:
@@ -4946,13 +4377,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 94.69999999999999
+      value: 95.8
     - type: f1
-      value: 93.10000000000001
+      value: 94.53333333333333
     - type: precision
-      value: 92.35
+      value: 93.91666666666666
     - type: recall
-      value: 94.69999999999999
+      value: 95.8
   - task:
       type: BitextMining
     dataset:
@@ -4963,13 +4394,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 96.8
+      value: 98.8
     - type: f1
-      value: 96.01222222222222
+      value: 98.48333333333332
     - type: precision
-      value: 95.67083333333332
+      value: 98.33333333333334
     - type: recall
-      value: 96.8
+      value: 98.8
   - task:
       type: BitextMining
     dataset:
@@ -4980,13 +4411,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 9.2
+      value: 17.5
     - type: f1
-      value: 7.911555250305249
+      value: 14.979285714285714
     - type: precision
-      value: 7.631246556216846
+      value: 14.23235060690943
     - type: recall
-      value: 9.2
+      value: 17.5
   - task:
       type: BitextMining
     dataset:
@@ -4997,13 +4428,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 77.48917748917748
+      value: 93.93939393939394
     - type: f1
-      value: 72.27375798804371
+      value: 91.991341991342
     - type: precision
-      value: 70.14430014430013
+      value: 91.05339105339105
     - type: recall
-      value: 77.48917748917748
+      value: 93.93939393939394
   - task:
       type: BitextMining
     dataset:
@@ -5014,13 +4445,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 77.09923664122137
+      value: 89.31297709923665
     - type: f1
-      value: 72.61541257724463
+      value: 86.76844783715012
     - type: precision
-      value: 70.8998380754106
+      value: 85.63613231552164
     - type: recall
-      value: 77.09923664122137
+      value: 89.31297709923665
   - task:
       type: BitextMining
     dataset:
@@ -5031,13 +4462,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 98.2532751091703
+      value: 99.12663755458514
     - type: f1
-      value: 97.69529354682193
+      value: 98.93255701115964
     - type: precision
-      value: 97.42843279961184
+      value: 98.83551673944687
     - type: recall
-      value: 98.2532751091703
+      value: 99.12663755458514
   - task:
       type: BitextMining
     dataset:
@@ -5048,13 +4479,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 82.8
+      value: 92.0
     - type: f1
-      value: 79.14672619047619
+      value: 89.77999999999999
     - type: precision
-      value: 77.59489247311828
+      value: 88.78333333333333
     - type: recall
-      value: 82.8
+      value: 92.0
   - task:
       type: BitextMining
     dataset:
@@ -5065,13 +4496,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 94.35028248587571
+      value: 96.89265536723164
     - type: f1
-      value: 92.86252354048965
+      value: 95.85687382297553
     - type: precision
-      value: 92.2080979284369
+      value: 95.33898305084746
     - type: recall
-      value: 94.35028248587571
+      value: 96.89265536723164
   - task:
       type: BitextMining
     dataset:
@@ -5082,13 +4513,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 8.5
+      value: 14.6
     - type: f1
-      value: 6.282429263935621
+      value: 11.820611790170615
     - type: precision
-      value: 5.783274240739785
+      value: 11.022616224355355
     - type: recall
-      value: 8.5
+      value: 14.6
   - task:
       type: BitextMining
     dataset:
@@ -5099,13 +4530,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 92.7
+      value: 95.89999999999999
     - type: f1
-      value: 91.025
+      value: 94.93333333333334
     - type: precision
-      value: 90.30428571428571
+      value: 94.48666666666666
     - type: recall
-      value: 92.7
+      value: 95.89999999999999
   - task:
       type: BitextMining
     dataset:
@@ -5116,13 +4547,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 81
+      value: 87.6
     - type: f1
-      value: 77.8232380952381
+      value: 84.72333333333334
     - type: precision
-      value: 76.60194444444444
+      value: 83.44166666666666
     - type: recall
-      value: 81
+      value: 87.6
   - task:
       type: BitextMining
     dataset:
@@ -5133,13 +4564,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 91
+      value: 94.8
     - type: f1
-      value: 88.70857142857142
+      value: 93.47333333333333
     - type: precision
-      value: 87.7
+      value: 92.875
     - type: recall
-      value: 91
+      value: 94.8
   - task:
       type: BitextMining
     dataset:
@@ -5150,13 +4581,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 96.39999999999999
+      value: 96.6
     - type: f1
-      value: 95.3
+      value: 95.71666666666665
     - type: precision
-      value: 94.76666666666667
+      value: 95.28333333333335
     - type: recall
-      value: 96.39999999999999
+      value: 96.6
   - task:
       type: BitextMining
     dataset:
@@ -5167,13 +4598,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 8.1
+      value: 17.8
     - type: f1
-      value: 7.001008218834307
+      value: 14.511074040901628
     - type: precision
-      value: 6.708329562594269
+      value: 13.503791000666002
     - type: recall
-      value: 8.1
+      value: 17.8
   - task:
       type: BitextMining
     dataset:
@@ -5184,13 +4615,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 87.1313672922252
+      value: 94.10187667560321
     - type: f1
-      value: 84.09070598748882
+      value: 92.46648793565683
     - type: precision
-      value: 82.79171454104429
+      value: 91.71134941912423
     - type: recall
-      value: 87.1313672922252
+      value: 94.10187667560321
   - task:
       type: BitextMining
     dataset:
@@ -5201,13 +4632,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 96.39999999999999
+      value: 97.0
     - type: f1
-      value: 95.28333333333333
+      value: 96.11666666666666
     - type: precision
-      value: 94.73333333333332
+      value: 95.68333333333334
     - type: recall
-      value: 96.39999999999999
+      value: 97.0
   - task:
       type: BitextMining
     dataset:
@@ -5218,13 +4649,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 42.29249011857708
+      value: 72.72727272727273
     - type: f1
-      value: 36.981018542283365
+      value: 66.58949745906267
     - type: precision
-      value: 35.415877813576024
+      value: 63.86693017127799
     - type: recall
-      value: 42.29249011857708
+      value: 72.72727272727273
   - task:
       type: BitextMining
     dataset:
@@ -5235,13 +4666,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 83.80281690140845
+      value: 90.14084507042254
     - type: f1
-      value: 80.86854460093896
+      value: 88.26291079812206
     - type: precision
-      value: 79.60093896713614
+      value: 87.32394366197182
     - type: recall
-      value: 83.80281690140845
+      value: 90.14084507042254
   - task:
       type: BitextMining
     dataset:
@@ -5252,13 +4683,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 45.26946107784431
+      value: 64.67065868263472
     - type: f1
-      value: 39.80235464678088
+      value: 58.2876627696987
     - type: precision
-      value: 38.14342660001342
+      value: 55.79255774165953
     - type: recall
-      value: 45.26946107784431
+      value: 64.67065868263472
   - task:
       type: BitextMining
     dataset:
@@ -5269,13 +4700,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 94.3
+      value: 95.6
     - type: f1
-      value: 92.9
+      value: 94.41666666666667
     - type: precision
-      value: 92.26666666666668
+      value: 93.85
     - type: recall
-      value: 94.3
+      value: 95.6
   - task:
       type: BitextMining
     dataset:
@@ -5286,13 +4717,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 37.93103448275862
+      value: 55.172413793103445
     - type: f1
-      value: 33.15192743764172
+      value: 49.63992493549144
     - type: precision
-      value: 31.57456528146183
+      value: 47.71405113769646
     - type: recall
-      value: 37.93103448275862
+      value: 55.172413793103445
   - task:
       type: BitextMining
     dataset:
@@ -5303,13 +4734,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 69.01408450704226
+      value: 77.46478873239437
     - type: f1
-      value: 63.41549295774648
+      value: 73.4417616811983
     - type: precision
-      value: 61.342778895595806
+      value: 71.91607981220658
     - type: recall
-      value: 69.01408450704226
+      value: 77.46478873239437
   - task:
       type: BitextMining
     dataset:
@@ -5320,13 +4751,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 76.66666666666667
+      value: 84.61538461538461
     - type: f1
-      value: 71.60705960705961
+      value: 80.91452991452994
     - type: precision
-      value: 69.60683760683762
+      value: 79.33760683760683
     - type: recall
-      value: 76.66666666666667
+      value: 84.61538461538461
   - task:
       type: BitextMining
     dataset:
@@ -5337,13 +4768,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 95.8
+      value: 98.2
     - type: f1
-      value: 94.48333333333333
+      value: 97.6
     - type: precision
-      value: 93.83333333333333
+      value: 97.3
     - type: recall
-      value: 95.8
+      value: 98.2
   - task:
       type: BitextMining
     dataset:
@@ -5354,13 +4785,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 52.81837160751566
+      value: 75.5741127348643
     - type: f1
-      value: 48.435977731384824
+      value: 72.00417536534445
     - type: precision
-      value: 47.11291973845539
+      value: 70.53467872883321
     - type: recall
-      value: 52.81837160751566
+      value: 75.5741127348643
   - task:
       type: BitextMining
     dataset:
@@ -5371,13 +4802,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 44.9
+      value: 62.2
     - type: f1
-      value: 38.88962621607783
+      value: 55.577460317460314
     - type: precision
-      value: 36.95936507936508
+      value: 52.98583333333333
     - type: recall
-      value: 44.9
+      value: 62.2
   - task:
       type: BitextMining
     dataset:
@@ -5388,13 +4819,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 90.55374592833876
+      value: 92.18241042345277
     - type: f1
-      value: 88.22553125484721
+      value: 90.6468124709167
     - type: precision
-      value: 87.26927252985884
+      value: 89.95656894679696
     - type: recall
-      value: 90.55374592833876
+      value: 92.18241042345277
   - task:
       type: BitextMining
     dataset:
@@ -5405,13 +4836,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 94.6
+      value: 96.1
     - type: f1
-      value: 93.13333333333333
+      value: 95.13333333333333
     - type: precision
-      value: 92.45333333333333
+      value: 94.66666666666667
     - type: recall
-      value: 94.6
+      value: 96.1
   - task:
       type: BitextMining
     dataset:
@@ -5422,13 +4853,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 93.7
+      value: 96.8
     - type: f1
-      value: 91.99666666666667
+      value: 95.85000000000001
     - type: precision
-      value: 91.26666666666668
+      value: 95.39999999999999
     - type: recall
-      value: 93.7
+      value: 96.8
   - task:
       type: BitextMining
     dataset:
@@ -5439,13 +4870,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 85.03937007874016
+      value: 92.1259842519685
     - type: f1
-      value: 81.75853018372703
+      value: 89.76377952755905
     - type: precision
-      value: 80.34120734908137
+      value: 88.71391076115485
     - type: recall
-      value: 85.03937007874016
+      value: 92.1259842519685
   - task:
       type: BitextMining
     dataset:
@@ -5456,13 +4887,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 88.3
+      value: 94.1
     - type: f1
-      value: 85.5
+      value: 92.49
     - type: precision
-      value: 84.25833333333334
+      value: 91.725
     - type: recall
-      value: 88.3
+      value: 94.1
   - task:
       type: BitextMining
     dataset:
@@ -5473,13 +4904,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 65.51246537396122
+      value: 77.5623268698061
     - type: f1
-      value: 60.02297410192148
+      value: 73.27364463791058
     - type: precision
-      value: 58.133467727289236
+      value: 71.51947852086357
     - type: recall
-      value: 65.51246537396122
+      value: 77.5623268698061
   - task:
       type: BitextMining
     dataset:
@@ -5490,13 +4921,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 96
+      value: 97.39999999999999
     - type: f1
-      value: 94.89
+      value: 96.56666666666666
     - type: precision
-      value: 94.39166666666667
+      value: 96.16666666666667
     - type: recall
-      value: 96
+      value: 97.39999999999999
   - task:
       type: BitextMining
     dataset:
@@ -5507,13 +4938,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 57.692307692307686
+      value: 66.34615384615384
     - type: f1
-      value: 53.162393162393165
+      value: 61.092032967032964
     - type: precision
-      value: 51.70673076923077
+      value: 59.27197802197802
     - type: recall
-      value: 57.692307692307686
+      value: 66.34615384615384
   - task:
       type: BitextMining
     dataset:
@@ -5524,13 +4955,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 91.60000000000001
+      value: 94.89999999999999
     - type: f1
-      value: 89.21190476190475
+      value: 93.41190476190476
     - type: precision
-      value: 88.08666666666667
+      value: 92.7
     - type: recall
-      value: 91.60000000000001
+      value: 94.89999999999999
   - task:
       type: BitextMining
     dataset:
@@ -5541,13 +4972,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 88
+      value: 93.10000000000001
     - type: f1
-      value: 85.47
+      value: 91.10000000000001
     - type: precision
-      value: 84.43266233766234
+      value: 90.13333333333333
     - type: recall
-      value: 88
+      value: 93.10000000000001
   - task:
       type: BitextMining
     dataset:
@@ -5558,13 +4989,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 92.7
+      value: 93.7
     - type: f1
-      value: 90.64999999999999
+      value: 91.97333333333334
     - type: precision
-      value: 89.68333333333332
+      value: 91.14166666666667
     - type: recall
-      value: 92.7
+      value: 93.7
   - task:
       type: BitextMining
     dataset:
@@ -5575,13 +5006,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 80.30660377358491
+      value: 92.21698113207547
     - type: f1
-      value: 76.33044137466307
+      value: 90.3796046720575
     - type: precision
-      value: 74.78970125786164
+      value: 89.56367924528303
     - type: recall
-      value: 80.30660377358491
+      value: 92.21698113207547
   - task:
       type: BitextMining
     dataset:
@@ -5592,13 +5023,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 96.39999999999999
+      value: 97.6
     - type: f1
-      value: 95.44
+      value: 96.91666666666667
     - type: precision
-      value: 94.99166666666666
+      value: 96.6
     - type: recall
-      value: 96.39999999999999
+      value: 97.6
   - task:
       type: BitextMining
     dataset:
@@ -5609,13 +5040,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 96.53284671532847
+      value: 97.44525547445255
     - type: f1
-      value: 95.37712895377129
+      value: 96.71532846715328
     - type: precision
-      value: 94.7992700729927
+      value: 96.35036496350365
     - type: recall
-      value: 96.53284671532847
+      value: 97.44525547445255
   - task:
       type: BitextMining
     dataset:
@@ -5626,13 +5057,13 @@ model-index:
       revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
     metrics:
     - type: accuracy
-      value: 89
+      value: 94.1
     - type: f1
-      value: 86.23190476190476
+      value: 92.34000000000002
     - type: precision
-      value: 85.035
+      value: 91.49166666666667
     - type: recall
-      value: 89
+      value: 94.1
   - task:
       type: Retrieval
     dataset:
@@ -5643,65 +5074,65 @@ model-index:
       revision: None
     metrics:
     - type: map_at_1
-      value: 2.585
+      value: 3.2910000000000004
     - type: map_at_10
-      value: 9.012
+      value: 10.373000000000001
     - type: map_at_100
-      value: 14.027000000000001
+      value: 15.612
     - type: map_at_1000
-      value: 15.565000000000001
+      value: 17.06
     - type: map_at_3
-      value: 5.032
+      value: 6.119
     - type: map_at_5
-      value: 6.657
+      value: 7.917000000000001
     - type: mrr_at_1
-      value: 28.571
+      value: 44.897999999999996
     - type: mrr_at_10
-      value: 45.377
+      value: 56.054
     - type: mrr_at_100
-      value: 46.119
+      value: 56.82000000000001
     - type: mrr_at_1000
-      value: 46.127
+      value: 56.82000000000001
     - type: mrr_at_3
-      value: 41.156
+      value: 52.381
     - type: mrr_at_5
-      value: 42.585
+      value: 53.81
     - type: ndcg_at_1
-      value: 27.551
+      value: 42.857
     - type: ndcg_at_10
-      value: 23.395
+      value: 27.249000000000002
     - type: ndcg_at_100
-      value: 33.342
+      value: 36.529
     - type: ndcg_at_1000
-      value: 45.523
+      value: 48.136
     - type: ndcg_at_3
-      value: 25.158
+      value: 33.938
     - type: ndcg_at_5
-      value: 23.427
+      value: 29.951
     - type: precision_at_1
-      value: 28.571
+      value: 44.897999999999996
     - type: precision_at_10
-      value: 21.429000000000002
+      value: 22.653000000000002
     - type: precision_at_100
-      value: 6.714
+      value: 7.000000000000001
     - type: precision_at_1000
-      value: 1.473
+      value: 1.48
     - type: precision_at_3
-      value: 27.211000000000002
+      value: 32.653
     - type: precision_at_5
-      value: 24.490000000000002
+      value: 27.755000000000003
     - type: recall_at_1
-      value: 2.585
+      value: 3.2910000000000004
     - type: recall_at_10
-      value: 15.418999999999999
+      value: 16.16
     - type: recall_at_100
-      value: 42.485
+      value: 43.908
     - type: recall_at_1000
-      value: 79.536
+      value: 79.823
     - type: recall_at_3
-      value: 6.239999999999999
+      value: 7.156
     - type: recall_at_5
-      value: 8.996
+      value: 10.204
   - task:
       type: Classification
     dataset:
@@ -5712,11 +5143,11 @@ model-index:
       revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
     metrics:
     - type: accuracy
-      value: 71.3234
+      value: 71.05879999999999
     - type: ap
-      value: 14.361688653847423
+      value: 14.609748142799111
     - type: f1
-      value: 54.819068624319044
+      value: 54.878956295843096
   - task:
       type: Classification
     dataset:
@@ -5727,9 +5158,9 @@ model-index:
       revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
     metrics:
     - type: accuracy
-      value: 61.97792869269949
+      value: 64.61799660441426
     - type: f1
-      value: 62.28965628513728
+      value: 64.8698191961434
   - task:
       type: Clustering
     dataset:
@@ -5740,7 +5171,7 @@ model-index:
       revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
     metrics:
     - type: v_measure
-      value: 38.90540145385218
+      value: 51.32860036611885
   - task:
       type: PairClassification
     dataset:
@@ -5751,51 +5182,51 @@ model-index:
       revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
     metrics:
     - type: cos_sim_accuracy
-      value: 86.53513739047506
+      value: 88.34714192048638
     - type: cos_sim_ap
-      value: 75.27741586677557
+      value: 80.26732975975634
     - type: cos_sim_f1
-      value: 69.18792902473774
+      value: 73.53415148134374
     - type: cos_sim_precision
-      value: 67.94708725515136
+      value: 69.34767360299276
     - type: cos_sim_recall
-      value: 70.47493403693932
+      value: 78.25857519788919
     - type: dot_accuracy
-      value: 84.7052512368123
+      value: 88.34714192048638
     - type: dot_ap
-      value: 69.36075482849378
+      value: 80.26733698491206
     - type: dot_f1
-      value: 64.44688376631296
+      value: 73.53415148134374
     - type: dot_precision
-      value: 59.92288500793831
+      value: 69.34767360299276
     - type: dot_recall
-      value: 69.70976253298153
+      value: 78.25857519788919
     - type: euclidean_accuracy
-      value: 86.60666388508076
+      value: 88.34714192048638
     - type: euclidean_ap
-      value: 75.47512772621097
+      value: 80.26734337771738
     - type: euclidean_f1
-      value: 69.413872536473
+      value: 73.53415148134374
     - type: euclidean_precision
-      value: 67.39562624254472
+      value: 69.34767360299276
     - type: euclidean_recall
-      value: 71.55672823218997
+      value: 78.25857519788919
     - type: manhattan_accuracy
-      value: 86.52917684925792
+      value: 88.30541813196639
     - type: manhattan_ap
-      value: 75.34000110496703
+      value: 80.19415808104145
     - type: manhattan_f1
-      value: 69.28489190226429
+      value: 73.55143870713441
     - type: manhattan_precision
-      value: 67.24608889992551
+      value: 73.25307511122743
     - type: manhattan_recall
-      value: 71.45118733509234
+      value: 73.85224274406332
     - type: max_accuracy
-      value: 86.60666388508076
+      value: 88.34714192048638
     - type: max_ap
-      value: 75.47512772621097
+      value: 80.26734337771738
     - type: max_f1
-      value: 69.413872536473
+      value: 73.55143870713441
   - task:
       type: PairClassification
     dataset:
@@ -5806,51 +5237,51 @@ model-index:
       revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
     metrics:
     - type: cos_sim_accuracy
-      value: 89.01695967710637
+      value: 89.81061047075717
     - type: cos_sim_ap
-      value: 85.8298270742901
+      value: 87.11747055081017
     - type: cos_sim_f1
-      value: 78.46988128389272
+      value: 80.04355498817256
     - type: cos_sim_precision
-      value: 74.86017897091722
+      value: 78.1165262000733
     - type: cos_sim_recall
-      value: 82.44533415460425
+      value: 82.06806282722513
     - type: dot_accuracy
-      value: 88.19420188613343
+      value: 89.81061047075717
     - type: dot_ap
-      value: 83.82679165901324
+      value: 87.11746902745236
     - type: dot_f1
-      value: 76.55833777304208
+      value: 80.04355498817256
     - type: dot_precision
-      value: 75.6884875846501
+      value: 78.1165262000733
     - type: dot_recall
-      value: 77.44841392054204
+      value: 82.06806282722513
     - type: euclidean_accuracy
-      value: 89.03054294252338
+      value: 89.81061047075717
     - type: euclidean_ap
-      value: 85.89089555185325
+      value: 87.11746919324248
     - type: euclidean_f1
-      value: 78.62997658079624
+      value: 80.04355498817256
     - type: euclidean_precision
-      value: 74.92329149232914
+      value: 78.1165262000733
     - type: euclidean_recall
-      value: 82.72251308900523
+      value: 82.06806282722513
     - type: manhattan_accuracy
-      value: 89.0266620095471
+      value: 89.79508673885202
     - type: manhattan_ap
-      value: 85.86458997929147
+      value: 87.11074390832218
     - type: manhattan_f1
-      value: 78.50685331000291
+      value: 80.13002540726349
     - type: manhattan_precision
-      value: 74.5499861534201
+      value: 77.83826945412311
     - type: manhattan_recall
-      value: 82.90729904527257
+      value: 82.56082537727133
     - type: max_accuracy
-      value: 89.03054294252338
+      value: 89.81061047075717
     - type: max_ap
-      value: 85.89089555185325
+      value: 87.11747055081017
     - type: max_f1
-      value: 78.62997658079624
+      value: 80.13002540726349
 language:
 - multilingual
 - af
@@ -5949,7 +5380,7 @@ language:
 license: mit
 ---
 
-## Multilingual-E5-large
+## Multilingual-E5-large-instruct
 
 [Multilingual E5 Text Embeddings: A Technical Report](https://arxiv.org/pdf/2402.05672).
 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei, arXiv 2024
@@ -5958,7 +5389,9 @@ This model has 24 layers and the embedding size is 1024.
 
 ## Usage
 
-Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
+Below are examples to encode queries and passages from the MS-MARCO passage ranking dataset.
+
+### Transformers
 
 ```python
 import torch.nn.functional as F
@@ -5972,16 +5405,24 @@ def average_pool(last_hidden_states: Tensor,
     last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
     return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
 
+def get_detailed_instruct(task_description: str, query: str) -> str:
+    return f'Instruct: {task_description}\nQuery: {query}'
 
-# Each input text should start with "query: " or "passage: ", even for non-English texts.
-# For tasks other than retrieval, you can simply use the "query: " prefix.
-input_texts = ['query: how much protein should a female eat',
-               'query: 南瓜的家常做法',
-               "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
-               "passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅"]
+# Each query must come with a one-sentence instruction that describes the task
+task = 'Given a web search query, retrieve relevant passages that answer the query'
+queries = [
+    get_detailed_instruct(task, 'how much protein should a female eat'),
+    get_detailed_instruct(task, '南瓜的家常做法')
+]
+# No need to add instruction for retrieval documents
+documents = [
+    "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
+    "1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅"
+]
+input_texts = queries + documents
 
-tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large')
-model = AutoModel.from_pretrained('intfloat/multilingual-e5-large')
+tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large-instruct')
+model = AutoModel.from_pretrained('intfloat/multilingual-e5-large-instruct')
 
 # Tokenize the input texts
 batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
@@ -5993,6 +5434,36 @@ embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'
 embeddings = F.normalize(embeddings, p=2, dim=1)
 scores = (embeddings[:2] @ embeddings[2:].T) * 100
 print(scores.tolist())
+# => [[91.92852783203125, 67.580322265625], [70.3814468383789, 92.1330795288086]]
+```
+
+### Sentence Transformers
+
+```python
+from sentence_transformers import SentenceTransformer
+
+def get_detailed_instruct(task_description: str, query: str) -> str:
+    return f'Instruct: {task_description}\nQuery: {query}'
+
+# Each query must come with a one-sentence instruction that describes the task
+task = 'Given a web search query, retrieve relevant passages that answer the query'
+queries = [
+    get_detailed_instruct(task, 'how much protein should a female eat'),
+    get_detailed_instruct(task, '南瓜的家常做法')
+]
+# No need to add instruction for retrieval documents
+documents = [
+    "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
+    "1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅"
+]
+input_texts = queries + documents
+
+model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')
+
+embeddings = model.encode(input_texts, convert_to_tensor=True, normalize_embeddings=True)
+scores = (embeddings[:2] @ embeddings[2:].T) * 100
+print(scores.tolist())
+# [[91.92853546142578, 67.5802993774414], [70.38143157958984, 92.13307189941406]]
 ```
 
 ## Supported Languages
@@ -6006,91 +5477,26 @@ but low-resource languages may see performance degradation.
 
 **Initialization**: [xlm-roberta-large](https://huggingface.co/xlm-roberta-large)
 
-**First stage**: contrastive pre-training with weak supervision
+**First stage**: contrastive pre-training with 1 billion weakly supervised text pairs.
 
-| Dataset                                                                                                | Weak supervision                      | # of text pairs |
-|--------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|
-| Filtered [mC4](https://huggingface.co/datasets/mc4)                                                    | (title, page content)                 | 1B              |
-| [CC News](https://huggingface.co/datasets/intfloat/multilingual_cc_news)                               | (title, news content)                 | 400M            |
-| [NLLB](https://huggingface.co/datasets/allenai/nllb)                                                   | translation pairs                     | 2.4B            |
-| [Wikipedia](https://huggingface.co/datasets/intfloat/wikipedia)                                        | (hierarchical section title, passage) | 150M            |
-| Filtered [Reddit](https://www.reddit.com/)                                                             | (comment, response)                   | 800M            |
-| [S2ORC](https://github.com/allenai/s2orc)                                                              | (title, abstract) and citation pairs  | 100M            |
-| [Stackexchange](https://stackexchange.com/)                                                            | (question, answer)                    | 50M             |
-| [xP3](https://huggingface.co/datasets/bigscience/xP3)                                                  | (input prompt, response)              | 80M             |
-| [Miscellaneous unsupervised SBERT data](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | -                                     | 10M             |
-
-**Second stage**: supervised fine-tuning
-
-| Dataset                                                                                | Language     | # of text pairs |
-|----------------------------------------------------------------------------------------|--------------|-----------------|
-| [MS MARCO](https://microsoft.github.io/msmarco/)                                       | English      | 500k            |
-| [NQ](https://github.com/facebookresearch/DPR)                                          | English      | 70k             |
-| [Trivia QA](https://github.com/facebookresearch/DPR)                                   | English      | 60k             |
-| [NLI from SimCSE](https://github.com/princeton-nlp/SimCSE)                             | English      | <300k           |
-| [ELI5](https://huggingface.co/datasets/eli5)                                           | English      | 500k            |
-| [DuReader Retrieval](https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval) | Chinese      | 86k             |
-| [KILT Fever](https://huggingface.co/datasets/kilt_tasks)                               | English      | 70k             |
-| [KILT HotpotQA](https://huggingface.co/datasets/kilt_tasks)                            | English      | 70k             |
-| [SQuAD](https://huggingface.co/datasets/squad)                                         | English      | 87k             |
-| [Quora](https://huggingface.co/datasets/quora)                                         | English      | 150k            |
-| [Mr. TyDi](https://huggingface.co/datasets/castorini/mr-tydi)                                                                           | 11 languages | 50k             |
-| [MIRACL](https://huggingface.co/datasets/miracl/miracl)                                                                             | 16 languages | 40k             |
-
-For all labeled datasets, we only use its training set for fine-tuning.
-
-For other training details, please refer to our paper at [https://arxiv.org/pdf/2402.05672](https://arxiv.org/pdf/2402.05672).
-
-## Benchmark Results on [Mr. TyDi](https://arxiv.org/abs/2108.08787)
-
-| Model                 | Avg MRR@10 |       | ar   | bn | en | fi | id | ja | ko | ru | sw   | te | th |
-|-----------------------|------------|-------|------| --- | --- | --- | --- | --- | --- | --- |------| --- | --- |
-| BM25                  | 33.3       | | 36.7 | 41.3 | 15.1 | 28.8 | 38.2 | 21.7 | 28.1 | 32.9 | 39.6 | 42.4 | 41.7 |
-| mDPR                  | 16.7       | | 26.0 | 25.8  | 16.2 | 11.3 | 14.6 | 18.1 | 21.9 | 18.5 | 7.3 | 10.6 | 13.5 |
-| BM25 + mDPR           | 41.7       | | 49.1 | 53.5 | 28.4 | 36.5 | 45.5 | 35.5 | 36.2 | 42.7 | 40.5 | 42.0 | 49.2 |
-|                       |            |
-| multilingual-e5-small | 64.4       | | 71.5 | 66.3 | 54.5 | 57.7 | 63.2 | 55.4 | 54.3 | 60.8 | 65.4 | 89.1 | 70.1 |
-| multilingual-e5-base  | 65.9       | | 72.3 | 65.0 | 58.5 | 60.8 | 64.9 | 56.6 | 55.8 | 62.7 | 69.0 | 86.6 | 72.7 |
-| multilingual-e5-large | **70.5**   | | 77.5 | 73.2 | 60.8 | 66.8 | 68.5 | 62.5 | 61.6 | 65.8 | 72.7 | 90.2 | 76.2 |
+**Second stage**: fine-tuning on datasets from the [E5-mistral](https://arxiv.org/abs/2401.00368) paper.
 
 ## MTEB Benchmark Evaluation
 
 Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results 
 on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316).
 
-## Support for Sentence Transformers
-
-Below is an example for usage with sentence_transformers.
-```python
-from sentence_transformers import SentenceTransformer
-model = SentenceTransformer('intfloat/multilingual-e5-large')
-input_texts = [
-    'query: how much protein should a female eat',
-    'query: 南瓜的家常做法',
-    "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 i     s 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or traini     ng for a marathon. Check out the chart below to see how much protein you should be eating each day.",
-    "passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮     ,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,     放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油     锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀      6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅"
-]
-embeddings = model.encode(input_texts, normalize_embeddings=True)
-```
-
-Package requirements
-
-`pip install sentence_transformers~=2.2.2`
-
-Contributors: [michaelfeil](https://huggingface.co/michaelfeil)
-
 ## FAQ
 
-**1. Do I need to add the prefix "query: " and "passage: " to input texts?**
+**1. Do I need to add instructions to the query?**
 
 Yes, this is how the model is trained, otherwise you will see a performance degradation.
+The task definition should be a one-sentence instruction that describes the task.
+This is a way to customize text embeddings for different scenarios through natural language instructions.
 
-Here are some rules of thumb:
-- Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval.
-
-- Use "query: " prefix for symmetric tasks such as semantic similarity, bitext mining, paraphrase retrieval.
+Please check out [unilm/e5/utils.py](https://github.com/microsoft/unilm/blob/9c0f1ff7ca53431fe47d2637dfe253643d94185b/e5/utils.py#L106) for instructions we used for evaluation.
 
-- Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering.
+On the other hand, there is no need to add instructions to the document side.
 
 **2. Why are my reproduced results slightly different from reported in the model card?**
 
diff --git a/models/intfloat-multilingual-e5-large/config.json b/models/multilingual-e5-large-instruct/config.json
similarity index 91%
rename from models/intfloat-multilingual-e5-large/config.json
rename to models/multilingual-e5-large-instruct/config.json
index 2f783e7..ca4605d 100644
--- a/models/intfloat-multilingual-e5-large/config.json
+++ b/models/multilingual-e5-large-instruct/config.json
@@ -1,5 +1,5 @@
 {
-  "_name_or_path": "intfloat/multilingual-e5-large",
+  "_name_or_path": "intfloat/multilingual-e5-large-instruct",
   "architectures": [
     "XLMRobertaModel"
   ],
diff --git a/models/multilingual-e5-large-instruct/config_sentence_transformers.json b/models/multilingual-e5-large-instruct/config_sentence_transformers.json
new file mode 100644
index 0000000..8df5a4d
--- /dev/null
+++ b/models/multilingual-e5-large-instruct/config_sentence_transformers.json
@@ -0,0 +1,9 @@
+{
+  "__version__": {
+    "sentence_transformers": "2.4.0.dev0",
+    "transformers": "4.37.0",
+    "pytorch": "2.1.0+cu121"
+  },
+  "prompts": {},
+  "default_prompt_name": null
+}
\ No newline at end of file
diff --git a/models/multilingual-e5-large-instruct/model.safetensors b/models/multilingual-e5-large-instruct/model.safetensors
new file mode 100644
index 0000000..40cb980
--- /dev/null
+++ b/models/multilingual-e5-large-instruct/model.safetensors
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d0d642a915473631cdf27ac25ca63d7fdd75a3bc3ef6cac2202cbcd63043cf20
+size 2239607176
diff --git a/models/intfloat-multilingual-e5-large/modules.json b/models/multilingual-e5-large-instruct/modules.json
similarity index 100%
rename from models/intfloat-multilingual-e5-large/modules.json
rename to models/multilingual-e5-large-instruct/modules.json
diff --git a/models/intfloat-multilingual-e5-large/sentence_bert_config.json b/models/multilingual-e5-large-instruct/sentence_bert_config.json
similarity index 100%
rename from models/intfloat-multilingual-e5-large/sentence_bert_config.json
rename to models/multilingual-e5-large-instruct/sentence_bert_config.json
diff --git a/models/intfloat-multilingual-e5-large/sentencepiece.bpe.model b/models/multilingual-e5-large-instruct/sentencepiece.bpe.model
similarity index 100%
rename from models/intfloat-multilingual-e5-large/sentencepiece.bpe.model
rename to models/multilingual-e5-large-instruct/sentencepiece.bpe.model
diff --git a/models/intfloat-multilingual-e5-large/special_tokens_map.json b/models/multilingual-e5-large-instruct/special_tokens_map.json
similarity index 100%
rename from models/intfloat-multilingual-e5-large/special_tokens_map.json
rename to models/multilingual-e5-large-instruct/special_tokens_map.json
diff --git a/models/intfloat-multilingual-e5-large/tokenizer.json b/models/multilingual-e5-large-instruct/tokenizer.json
similarity index 100%
rename from models/intfloat-multilingual-e5-large/tokenizer.json
rename to models/multilingual-e5-large-instruct/tokenizer.json
diff --git a/models/intfloat-multilingual-e5-large/tokenizer_config.json b/models/multilingual-e5-large-instruct/tokenizer_config.json
similarity index 97%
rename from models/intfloat-multilingual-e5-large/tokenizer_config.json
rename to models/multilingual-e5-large-instruct/tokenizer_config.json
index 31cf25a..bc9cb00 100644
--- a/models/intfloat-multilingual-e5-large/tokenizer_config.json
+++ b/models/multilingual-e5-large-instruct/tokenizer_config.json
@@ -41,6 +41,7 @@
       "special": true
     }
   },
+  "additional_special_tokens": [],
   "bos_token": "<s>",
   "clean_up_tokenization_spaces": true,
   "cls_token": "<s>",
-- 
GitLab