ADCLK_baseline.ipynb 19.1 KB
Newer Older
sanjay_pokkali's avatar
sanjay_pokkali committed
1
{
ashivani's avatar
ashivani committed
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "O4PuSwlGlpoQ"
   },
   "source": [
    "![AIcrowd-Logo](https://raw.githubusercontent.com/AIcrowd/AIcrowd/master/app/assets/images/misc/aicrowd-horizontal.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "ZtEKOsBu2wCX"
   },
   "source": [
ashivani's avatar
ashivani committed
20
    "# Getting Started Code for [ADCLK](https://www.aicrowd.com/challenges/adclk) Challenge\n",
ashivani's avatar
ashivani committed
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
    "#### Author : Sanjay Pokkali"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "iDNH3tML2wCZ"
   },
   "source": [
    "## Download Necessary Packages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
ashivani's avatar
ashivani committed
38
    "colab": {
ashivani's avatar
ashivani committed
39 40 41 42 43 44 45 46 47 48 49 50 51 52
     "base_uri": "https://localhost:8080/",
     "height": 187
    },
    "colab_type": "code",
    "id": "iyjnts_i2wCZ",
    "outputId": "b7ed6daa-5f51-43f6-82a8-337a678756a6"
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "!pip install numpy\n",
    "!pip install pandas\n",
    "!pip install scikit-learn"
   ]
ashivani's avatar
ashivani committed
53
  },
ashivani's avatar
ashivani committed
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "hMUMGoZZ2wCd"
   },
   "source": [
    "## Download data\n",
    "The first step is to download out train test data. We will be training a classifier on the train data and make predictions on test data. We submit our predictions\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 391
    },
    "colab_type": "code",
    "id": "KM91aXAw2wCe",
    "outputId": "48d6bcbe-bfda-4ba2-bdb2-e943096f0bdc"
   },
   "outputs": [],
   "source": [
    "#Donwload the datasets\n",
    "!rm -rf data\n",
    "!mkdir data\n",
ashivani's avatar
ashivani committed
82
    "!wget https://datasets.aicrowd.com/default/aicrowd-practice-challenges/public/adclk/v0.1/test.csv\n",
ashivani's avatar
ashivani committed
83
    "!wget https://datasets.aicrowd.com/default/aicrowd-practice-challenges/public/adclk/v0.1/train.csv\n",
ashivani's avatar
ashivani committed
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
    "!mv train.csv data/train.csv\n",
    "!mv test.csv data/test.csv"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "U7H2PP692wCg"
   },
   "source": [
    "\n",
    "## Import packages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "zv0sEu7z2wCg"
   },
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.linear_model import LogisticRegression\n",
    "from sklearn.neural_network import MLPClassifier\n",
    "from sklearn.svm import SVC\n",
    "from sklearn.metrics import f1_score,precision_score,recall_score,accuracy_score,log_loss"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "Pc0brLwc2wCi"
   },
   "source": [
    "## Load Data\n",
    "- We use pandas 🐼 library to load our data.   \n",
    "- Pandas loads the data into dataframes and facilitates us to analyse the data.   \n",
    "- Learn more about it [here](https://www.tutorialspoint.com/python_data_science/python_pandas.htm) 🤓"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "eBwUmeV92wCj"
   },
   "outputs": [],
   "source": [
    "all_data_path = \"data/train.csv\" #path where data is stored"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "Mugz2FSA2wCm"
   },
   "outputs": [],
   "source": [
    "all_data = pd.read_csv(all_data_path) #load data in dataframe using pandas"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "NMtGgNBv2wCo"
   },
   "source": [
    "## Visualize the data 👀"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 204
    },
    "colab_type": "code",
    "id": "mEKcS2Lr2wCp",
    "outputId": "209a9541-3cbd-4210-8ca9-584ade35e3f4"
   },
   "outputs": [],
   "source": [
    "all_data.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "bubtKctQ2wCr"
   },
   "source": [
    "We can see the dataset contains 12 columns,where columns 2-12 denotes the information about the person that is called and the first column tell whether he clicked on the ad or not."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "zTHwDehiuQSv"
   },
   "source": [
    "Let us now pre-process the data to remove any unwanted columns. We remove url_hash and advertiser_id"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 419
    },
    "colab_type": "code",
    "id": "9fKmki4WYrMk",
    "outputId": "dde26fa8-6db3-4c58-fef2-ab71e80a9f3b"
   },
   "outputs": [],
   "source": [
    "all_data.drop([\"url_hash\",\"advertiser_id\"],axis=1,inplace=True)\n",
    "all_data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "tN9sICA62wCs"
   },
   "source": [
    "## Split Data into Train and Validation 🔪\n",
    "-  The next step is to think of a way to test how well our model is performing. we cannot use the test data given as it does not contain the data labels for us to verify.    \n",
    "- The workaround this is to split the given training data into training and validation. Typically validation sets give us an idea of how our model will perform on unforeseen data. it is like holding back a chunk of data while training our model and then using it to for the purpose of testing. it is a standard way to fine-tune hyperparameters in a model.    \n",
    "- There are multiple ways to split a dataset into validation and training sets. following are two popular ways to go about it, [k-fold](https://machinelearningmastery.com/k-fold-cross-validation/), [leave one out](https://en.wikipedia.org/wiki/Cross-validation_statistics). 🧐\n",
    "- Validation sets are also used to avoid your model from [overfitting](https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/) on the train dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "jx3Uy1_w2wCs"
   },
   "outputs": [],
   "source": [
    "X_train, X_val= train_test_split(all_data, test_size=0.2, random_state=42) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "BwRIUL822wCu"
   },
   "source": [
    "- We have decided to split the data with 20 % as validation and 80 % as training.  \n",
    "- To learn more about the train_test_split function [click here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html). 🧐  \n",
    "- This is of course the simplest way to validate your model by simply taking a random chunk of the train set and setting it aside solely for the purpose of testing our train model on unseen data. as mentioned in the previous block, you can experiment 🔬 with and choose more sophisticated techniques and make your model better."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "01_sH1Dw2wCu"
   },
   "source": [
    "- Now, since we have our data splitted into train and validation sets, we need to get the corresponding labels separated from the data.   \n",
    "- with this step we are all set move to the next step with a prepared dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 255
    },
    "colab_type": "code",
    "id": "XcgFJtIq2wCx",
    "outputId": "a501b94a-4243-4f25-e936-36e248827fc7"
   },
   "outputs": [],
   "source": [
    "X_train,y_train = X_train.iloc[:,1:],X_train.iloc[:,0]\n",
    "X_val,y_val = X_val.iloc[:,1:],X_val.iloc[:,0]\n",
    "print(X_train)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "QQp1N8J5mgne"
   },
   "source": [
    "# TRAINING PHASE 🏋️"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "fygOQDu72wCz"
   },
   "source": [
    "## Define the Model\n",
    "\n",
    "- We have fixed our data and now we are ready to train our model.   \n",
    "\n",
    "- There are a ton of classifiers to choose from some being [Logistic Regression](https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc), [SVM](https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47), [Random Forests](https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47), [Decision Trees](https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052), etc.🧐         \n",
    "\n",
    "- Remember that there are no hard-laid rules here. you can mix and match classifiers, it is advisable to read up on the numerous techniques and choose the best fit for your solution , experimentation is the key.     \n",
    "   \n",
    "- A good model does not depend solely on the classifier but also on the features you choose. So make sure to analyse and understand your data well and move forward with a clear view of the problem at hand.  you can gain important insight from [here](https://towardsdatascience.com/the-5-feature-selection-algorithms-every-data-scientist-need-to-know-3a6b566efd2).🧐         "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "fno2jEaF2wC0"
   },
   "outputs": [],
   "source": [
    "classifier = SVC(gamma='auto')\n",
    "\n",
    "#classifier = MLPClassifier(hidden_layer_sizes=(1024,512), max_iter=300,activation = 'relu',solver='adam',random_state=1)\n",
    "\n",
    "# from sklearn.linear_model import LogisticRegression\n",
    "# classifier = LogisticRegression()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "UfKPrvQu2wC2"
   },
   "source": [
    "- To start you off, We have used a basic [Support Vector Machines](https://scikit-learn.org/stable/modules/svm.html#classification) classifier here.    \n",
    "- But you can tune parameters and increase the performance. To see the list of parameters visit [here](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html).   \n",
    "- Do keep in mind there exist sophisticated techniques for everything, the key as quoted earlier is to search them and experiment to fit your implementation."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "vwZI-cXo2wC2"
   },
   "source": [
    "To read more about other sklearn classifiers visit [here 🧐](https://scikit-learn.org/stable/supervised_learning.html). Try and use other classifiers to see how the performance of your model changes. Try using [Logistic Regression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) or [MLP](http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html) and compare how the performance changes."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "CpFNFIw12wC2"
   },
   "source": [
    "## Train the Model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 85
    },
    "colab_type": "code",
    "id": "Tj40TCn42wC3",
    "outputId": "4481f5ba-bff7-4b10-d61d-d508397ef31a"
   },
   "outputs": [],
   "source": [
    "classifier.fit(X_train, y_train)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "rLQuEx6W2wC5"
   },
   "source": [
    "Got a warning! Dont worry, its just because the number of iteration is very less(defined in the classifier in the above cell).Increase the number of iterations and see if the warning vanishes and also see how the performance changes.Do remember increasing iterations also increases the running time.( Hint: max_iter=500)\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "RDzimyBPm1iK"
   },
   "source": [
    "# Validation Phase 🤔\n",
    "Wonder how well your model learned! Lets check it."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "91NtIX202wC5"
   },
   "source": [
    "## Predict on Validation\n",
    "\n",
    "Now we predict using our trained model on the validation set we created and evaluate our model on unforeseen data."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "id": "wv7jeU3W2wC6",
    "outputId": "2e240562-7a8e-4984-eb12-30594fad62b4"
   },
   "outputs": [],
   "source": [
    "y_pred = classifier.predict(X_val)\n",
    "print(y_pred)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "5z-zEWhz2wC8"
   },
   "source": [
    "## Evaluate the Performance\n",
    "\n",
    "- We have used basic metrics to quantify the performance of our model.  \n",
    "- This is a crucial step, you should reason out the metrics and take hints to improve aspects of your model.\n",
    "- Do read up on the meaning and use of different metrics. there exist more metrics and measures, you should learn to use them correctly with respect to the solution,dataset and other factors. \n",
    "- [F1 score](https://en.wikipedia.org/wiki/F1_score) and [Log Loss](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html) are the metrics for this challenge"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "kuDZ5eIl2wC8"
   },
   "outputs": [],
   "source": [
    "precision = precision_score(y_val,y_pred,average='micro')\n",
    "recall = recall_score(y_val,y_pred,average='micro')\n",
    "accuracy = accuracy_score(y_val,y_pred)\n",
    "f1 = f1_score(y_val,y_pred,average='macro')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 85
    },
    "colab_type": "code",
    "id": "7My62Dvw2wC-",
    "outputId": "5a3bae98-8fbf-440f-f2d4-29e64e4882c1"
   },
   "outputs": [],
   "source": [
    "print(\"Accuracy of the model is :\" ,accuracy)\n",
    "print(\"Recall of the model is :\" ,recall)\n",
    "print(\"Precision of the model is :\" ,precision)\n",
    "print(\"F1 score of the model is :\" ,f1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "dzALs-Qg2wDB"
   },
   "source": [
    "# Testing Phase 😅\n",
    "\n",
    "We are almost done. We trained and validated on the training data. Now its the time to predict on test set and make a submission."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "Xhi38sIB2wDB"
   },
   "source": [
    "## Load Test Set\n",
    "\n",
    "Load the test data on which final submission is to be made."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "id": "pkaRiDDe2wDC",
    "outputId": "e788ecd8-afba-4d24-989a-bd63aa2657fa"
   },
   "outputs": [],
   "source": [
    "final_test_path = \"data/test.csv\"\n",
    "final_test = pd.read_csv(final_test_path)\n",
    "final_test.drop([\"url_hash\",\"advertiser_id\"],axis=1,inplace=True)\n",
    "len(final_test)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "UowX6JDt2wDG"
   },
   "source": [
    "## Predict Test Set\n",
    "Predict on the test set and you are all set to make the submission !"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {
     "base_uri": "https://localhost:8080/",
     "height": 34
    },
    "colab_type": "code",
    "id": "XPSnS_tJ2wDH",
    "outputId": "76d418e5-d423-47d7-c63f-305f872608ad"
   },
   "outputs": [],
   "source": [
    "submission = classifier.predict(final_test)\n",
    "len(submission)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "CzNzVf_p2wDI"
   },
   "source": [
    "## Save the prediction to csv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "WVikNuU62wDJ"
   },
   "outputs": [],
   "source": [
    "#change the header according to the submission guidelines"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "xkYnHOAh2wDL"
   },
   "outputs": [],
   "source": [
    "submission = pd.DataFrame(submission)\n",
    "submission.to_csv('submission.csv',header=['click'],index=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "VlYQsWiX2wDM"
   },
   "source": [
    "🚧 Note :    \n",
    "- Do take a look at the submission format.   \n",
    "- The submission file should contain a header.   \n",
    "- Follow all submission guidelines strictly to avoid inconvenience."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "EF7q1Hqd2wDN"
   },
   "source": [
    "## To download the generated csv in colab run the below command"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "colab": {},
    "colab_type": "code",
    "id": "g4p8bF7Z2wDN"
   },
   "outputs": [],
   "source": [
    "try:\n",
    "  from google.colab import files\n",
    "  files.download('submission.csv')\n",
    "except ImportError as e:\n",
    "  print(\"Only for Collab\") "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "colab_type": "text",
    "id": "-dHkb4QE2wDP"
   },
   "source": [
ashivani's avatar
ashivani committed
646
    "### Well Done! 👍 We are all set to make a submission and see your name on leaderborad. Lets navigate to [challenge page](https://www.aicrowd.com/challenges/adclk) and make one."
ashivani's avatar
ashivani committed
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "colab": {
   "collapsed_sections": [],
   "machine_shape": "hm",
   "name": "ADCLK_baseline.ipynb",
   "provenance": []
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
ashivani's avatar
ashivani committed
679
   "version": "3.7.6"
ashivani's avatar
ashivani committed
680 681 682 683 684
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}