import copy import os import pickle import random import numpy as np import torch import torch.nn.functional as F import torch.optim as optim from reinforcement_learning.model import DuelingQNetwork from reinforcement_learning.policy import Policy from reinforcement_learning.replay_buffer import ReplayBuffer class DDDQNPolicy(Policy): """Dueling Double DQN policy""" def __init__(self, state_size, action_size, in_parameters, evaluation_mode=False): super(Policy, self).__init__() self.ddqn_parameters = in_parameters self.evaluation_mode = evaluation_mode self.state_size = state_size self.action_size = action_size self.double_dqn = True self.hidsize = 128 if not evaluation_mode: self.hidsize = self.ddqn_parameters.hidden_size self.buffer_size = self.ddqn_parameters.buffer_size self.batch_size = self.ddqn_parameters.batch_size self.update_every = self.ddqn_parameters.update_every self.learning_rate = self.ddqn_parameters.learning_rate self.tau = self.ddqn_parameters.tau self.gamma = self.ddqn_parameters.gamma self.buffer_min_size = self.ddqn_parameters.buffer_min_size # Device if self.ddqn_parameters.use_gpu and torch.cuda.is_available(): self.device = torch.device("cuda:0") # print("🐇 Using GPU") else: self.device = torch.device("cpu") # print("🐢 Using CPU") # Q-Network self.qnetwork_local = DuelingQNetwork(state_size, action_size, hidsize1=self.hidsize, hidsize2=self.hidsize).to(self.device) if not evaluation_mode: self.qnetwork_target = copy.deepcopy(self.qnetwork_local) self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=self.learning_rate) self.memory = ReplayBuffer(action_size, self.buffer_size, self.batch_size, self.device) self.t_step = 0 self.loss = 0.0 else: self.memory = ReplayBuffer(action_size, 1, 1, self.device) self.loss = 0.0 def act(self, handle, state, eps=0.): state = torch.from_numpy(state).float().unsqueeze(0).to(self.device) self.qnetwork_local.eval() with torch.no_grad(): action_values = self.qnetwork_local(state) self.qnetwork_local.train() # Epsilon-greedy action selection if random.random() >= eps: return np.argmax(action_values.cpu().data.numpy()) else: return random.choice(np.arange(self.action_size)) def step(self, handle, state, action, reward, next_state, done): assert not self.evaluation_mode, "Policy has been initialized for evaluation only." # Save experience in replay memory self.memory.add(state, action, reward, next_state, done) # Learn every UPDATE_EVERY time steps. self.t_step = (self.t_step + 1) % self.update_every if self.t_step == 0: # If enough samples are available in memory, get random subset and learn if len(self.memory) > self.buffer_min_size and len(self.memory) > self.batch_size: self._learn() def _learn(self): experiences = self.memory.sample() states, actions, rewards, next_states, dones, _ = experiences # Get expected Q values from local model q_expected = self.qnetwork_local(states).gather(1, actions) if self.double_dqn: # Double DQN q_best_action = self.qnetwork_local(next_states).max(1)[1] q_targets_next = self.qnetwork_target(next_states).gather(1, q_best_action.unsqueeze(-1)) else: # DQN q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(-1) # Compute Q targets for current states q_targets = rewards + (self.gamma * q_targets_next * (1 - dones)) # Compute loss self.loss = F.mse_loss(q_expected, q_targets) # Minimize the loss self.optimizer.zero_grad() self.loss.backward() self.optimizer.step() # Update target network self._soft_update(self.qnetwork_local, self.qnetwork_target, self.tau) def _soft_update(self, local_model, target_model, tau): # Soft update model parameters. # θ_target = τ*θ_local + (1 - τ)*θ_target for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data) def save(self, filename): torch.save(self.qnetwork_local.state_dict(), filename + ".local") torch.save(self.qnetwork_target.state_dict(), filename + ".target") def load(self, filename): try: if os.path.exists(filename + ".local") and os.path.exists(filename + ".target"): self.qnetwork_local.load_state_dict(torch.load(filename + ".local", map_location=self.device)) print("qnetwork_local loaded ('{}')".format(filename + ".local")) if not self.evaluation_mode: self.qnetwork_target.load_state_dict(torch.load(filename + ".target", map_location=self.device)) print("qnetwork_target loaded ('{}' )".format(filename + ".target")) else: print(">> Checkpoint not found, using untrained policy! ('{}', '{}')".format(filename + ".local", filename + ".target")) except Exception as exc: print(exc) print("Couldn't load policy from, using untrained policy! ('{}', '{}')".format(filename + ".local", filename + ".target")) def save_replay_buffer(self, filename): memory = self.memory.memory with open(filename, 'wb') as f: pickle.dump(list(memory)[-500000:], f) def load_replay_buffer(self, filename): with open(filename, 'rb') as f: self.memory.memory = pickle.load(f) def test(self): self.act(0, np.array([[0] * self.state_size])) self._learn() def clone(self): me = DDDQNPolicy(self.state_size, self.action_size, self.ddqn_parameters, evaluation_mode=True) me.qnetwork_target = copy.deepcopy(self.qnetwork_local) me.qnetwork_target = copy.deepcopy(self.qnetwork_target) return me