Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • hebe0663/neurips2020-flatland-starter-kit
  • flatland/neurips2020-flatland-starter-kit
  • manavsinghal157/marl-flatland
3 results
Show changes
Showing
with 1524 additions and 100 deletions
PPO checkpoints will be saved here
File added
File added
File added
File added
#!/bin/bash
if [ -e environ_secret.sh ]
then
echo "Note: Gathering environment variables from environ_secret.sh"
source environ_secret.sh
else
echo "Note: Gathering environment variables from environ.sh"
source environ.sh
fi
# Expected Env variables : in environ.sh
sudo docker run \
--net=host \
-v ./scratch/test-envs:/flatland_envs:z \
-it ${IMAGE_NAME}:${IMAGE_TAG} \
/home/aicrowd/run.sh
#!/bin/bash
if [ -e environ_secret.sh ]
then
echo "Note: Gathering environment variables from environ_secret.sh"
source environ_secret.sh
else
echo "Note: Gathering environment variables from environ.sh"
source environ.sh
fi
# Expected Env variables : in environ.sh
sudo docker run \
--net=host \
-v ./scratch/test-envs:/flatland_envs:z \
-it ${IMAGE_NAME}:${IMAGE_TAG} \
/home/aicrowd/run.sh
name: flatland-rl-test
name: flatland-rl
channels:
- pytorch
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1
- ca-certificates=2019.5.15
- certifi=2019.6.16
- libedit=3.1.20181209
- libffi=3.2.1
- libgcc-ng=9.1.0
- libstdcxx-ng=9.1.0
- ncurses=6.1
- openssl=1.1.1c
- pip=19.1.1
- python=3.6.8
- readline=7.0
- setuptools=41.0.1
- sqlite=3.29.0
- tk=8.6.8
- wheel=0.33.4
- xz=5.2.4
- zlib=1.2.11
- psutil==5.7.2
- pytorch==1.6.0
- pip==20.2.3
- python==3.6.8
- pip:
- atomicwrites==1.3.0
- attrs==19.1.0
- bleach==3.1.0
- cairocffi==1.0.2
- cairosvg==2.4.0
- cffi==1.12.3
- chardet==3.0.4
- click==7.0
- crowdai-api==0.1.21
- cssselect2==0.2.1
- cycler==0.10.0
- defusedxml==0.6.0
- docutils==0.15.1
- filelock==3.0.12
- flatland-rl==0.3.6
- idna==2.8
- importlib-metadata==0.19
- importlib-resources==1.0.2
- kiwisolver==1.1.0
- lxml==4.4.0
- matplotlib==3.1.1
- more-itertools==7.2.0
- msgpack==0.6.1
- msgpack-numpy==0.4.4.3
- numpy==1.17.0
- packaging==19.0
- pandas==0.25.0
- pillow==6.1.0
- pkginfo==1.5.0.1
- pluggy==0.12.0
- py==1.8.0
- pyarrow==0.14.1
- pycparser==2.19
- pygments==2.4.2
- pyparsing==2.4.1.1
- pytest==5.0.1
- pytest-runner==5.1
- python-dateutil==2.8.0
- python-gitlab==1.10.0
- pytz==2019.1
- readme-renderer==24.0
- recordtype==1.3
- redis==3.3.2
- requests==2.22.0
- requests-toolbelt==0.9.1
- screeninfo==0.4
- six==1.12.0
- svgutils==0.3.1
- timeout-decorator==0.4.1
- tinycss2==1.0.2
- toml==0.10.0
- tox==3.13.2
- tqdm==4.32.2
- twine==1.13.0
- urllib3==1.25.3
- ushlex==0.99.1
- virtualenv==16.7.2
- wcwidth==0.1.7
- webencodings==0.5.1
- xarray==0.12.3
- zipp==0.5.2
prefix: /home/mohanty/anaconda3/envs/flatland-rl-test
- tensorboard==2.3.0
- tensorboardx==2.1
\ No newline at end of file
File added
File added
File added
File added
import copy
import os
import pickle
import random
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from reinforcement_learning.model import DuelingQNetwork
from reinforcement_learning.policy import Policy, LearningPolicy
from reinforcement_learning.replay_buffer import ReplayBuffer
class DDDQNPolicy(LearningPolicy):
"""Dueling Double DQN policy"""
def __init__(self, state_size, action_size, in_parameters, evaluation_mode=False):
print(">> DDDQNPolicy")
super(Policy, self).__init__()
self.ddqn_parameters = in_parameters
self.evaluation_mode = evaluation_mode
self.state_size = state_size
self.action_size = action_size
self.double_dqn = True
self.hidsize = 128
if not evaluation_mode:
self.hidsize = self.ddqn_parameters.hidden_size
self.buffer_size = self.ddqn_parameters.buffer_size
self.batch_size = self.ddqn_parameters.batch_size
self.update_every = self.ddqn_parameters.update_every
self.learning_rate = self.ddqn_parameters.learning_rate
self.tau = self.ddqn_parameters.tau
self.gamma = self.ddqn_parameters.gamma
self.buffer_min_size = self.ddqn_parameters.buffer_min_size
# Device
if self.ddqn_parameters.use_gpu and torch.cuda.is_available():
self.device = torch.device("cuda:0")
# print("🐇 Using GPU")
else:
self.device = torch.device("cpu")
# print("🐢 Using CPU")
# Q-Network
self.qnetwork_local = DuelingQNetwork(state_size,
action_size,
hidsize1=self.hidsize,
hidsize2=self.hidsize).to(self.device)
if not evaluation_mode:
self.qnetwork_target = copy.deepcopy(self.qnetwork_local)
self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=self.learning_rate)
self.memory = ReplayBuffer(action_size, self.buffer_size, self.batch_size, self.device)
self.t_step = 0
self.loss = 0.0
else:
self.memory = ReplayBuffer(action_size, 1, 1, self.device)
self.loss = 0.0
def act(self, handle, state, eps=0.):
state = torch.from_numpy(state).float().unsqueeze(0).to(self.device)
self.qnetwork_local.eval()
with torch.no_grad():
action_values = self.qnetwork_local(state)
self.qnetwork_local.train()
# Epsilon-greedy action selection
if random.random() >= eps:
return np.argmax(action_values.cpu().data.numpy())
else:
return random.choice(np.arange(self.action_size))
def step(self, handle, state, action, reward, next_state, done):
assert not self.evaluation_mode, "Policy has been initialized for evaluation only."
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
# Learn every UPDATE_EVERY time steps.
self.t_step = (self.t_step + 1) % self.update_every
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > self.buffer_min_size and len(self.memory) > self.batch_size:
self._learn()
def _learn(self):
experiences = self.memory.sample()
states, actions, rewards, next_states, dones, _ = experiences
# Get expected Q values from local model
q_expected = self.qnetwork_local(states).gather(1, actions)
if self.double_dqn:
# Double DQN
q_best_action = self.qnetwork_local(next_states).max(1)[1]
q_targets_next = self.qnetwork_target(next_states).gather(1, q_best_action.unsqueeze(-1))
else:
# DQN
q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(-1)
# Compute Q targets for current states
q_targets = rewards + (self.gamma * q_targets_next * (1 - dones))
# Compute loss
self.loss = F.mse_loss(q_expected, q_targets)
# Minimize the loss
self.optimizer.zero_grad()
self.loss.backward()
self.optimizer.step()
# Update target network
self._soft_update(self.qnetwork_local, self.qnetwork_target, self.tau)
def _soft_update(self, local_model, target_model, tau):
# Soft update model parameters.
# θ_target = τ*θ_local + (1 - τ)*θ_target
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau * local_param.data + (1.0 - tau) * target_param.data)
def save(self, filename):
torch.save(self.qnetwork_local.state_dict(), filename + ".local")
torch.save(self.qnetwork_target.state_dict(), filename + ".target")
def load(self, filename):
try:
if os.path.exists(filename + ".local") and os.path.exists(filename + ".target"):
self.qnetwork_local.load_state_dict(torch.load(filename + ".local", map_location=self.device))
print("qnetwork_local loaded ('{}')".format(filename + ".local"))
if not self.evaluation_mode:
self.qnetwork_target.load_state_dict(torch.load(filename + ".target", map_location=self.device))
print("qnetwork_target loaded ('{}' )".format(filename + ".target"))
else:
print(">> Checkpoint not found, using untrained policy! ('{}', '{}')".format(filename + ".local",
filename + ".target"))
except Exception as exc:
print(exc)
print("Couldn't load policy from, using untrained policy! ('{}', '{}')".format(filename + ".local",
filename + ".target"))
def save_replay_buffer(self, filename):
memory = self.memory.memory
with open(filename, 'wb') as f:
pickle.dump(list(memory)[-500000:], f)
def load_replay_buffer(self, filename):
with open(filename, 'rb') as f:
self.memory.memory = pickle.load(f)
def test(self):
self.act(0, np.array([[0] * self.state_size]))
self._learn()
def clone(self):
me = DDDQNPolicy(self.state_size, self.action_size, self.ddqn_parameters, evaluation_mode=True)
me.qnetwork_target = copy.deepcopy(self.qnetwork_local)
me.qnetwork_target = copy.deepcopy(self.qnetwork_target)
return me
from flatland.envs.agent_utils import RailAgentStatus
from flatland.envs.rail_env import RailEnv, RailEnvActions
from reinforcement_learning.policy import HybridPolicy
from reinforcement_learning.ppo_agent import PPOPolicy
from utils.agent_action_config import map_rail_env_action
from utils.dead_lock_avoidance_agent import DeadLockAvoidanceAgent
class DeadLockAvoidanceWithDecisionAgent(HybridPolicy):
def __init__(self, env: RailEnv, state_size, action_size, learning_agent):
print(">> DeadLockAvoidanceWithDecisionAgent")
super(DeadLockAvoidanceWithDecisionAgent, self).__init__()
self.env = env
self.state_size = state_size
self.action_size = action_size
self.learning_agent = learning_agent
self.dead_lock_avoidance_agent = DeadLockAvoidanceAgent(self.env, action_size, False)
self.policy_selector = PPOPolicy(state_size, 2)
self.memory = self.learning_agent.memory
self.loss = self.learning_agent.loss
def step(self, handle, state, action, reward, next_state, done):
select = self.policy_selector.act(handle, state, 0.0)
self.policy_selector.step(handle, state, select, reward, next_state, done)
self.dead_lock_avoidance_agent.step(handle, state, action, reward, next_state, done)
self.learning_agent.step(handle, state, action, reward, next_state, done)
self.loss = self.learning_agent.loss
def act(self, handle, state, eps=0.):
select = self.policy_selector.act(handle, state, eps)
if select == 0:
return self.learning_agent.act(handle, state, eps)
return self.dead_lock_avoidance_agent.act(handle, state, -1.0)
def save(self, filename):
self.dead_lock_avoidance_agent.save(filename)
self.learning_agent.save(filename)
self.policy_selector.save(filename + '.selector')
def load(self, filename):
self.dead_lock_avoidance_agent.load(filename)
self.learning_agent.load(filename)
self.policy_selector.load(filename + '.selector')
def start_step(self, train):
self.dead_lock_avoidance_agent.start_step(train)
self.learning_agent.start_step(train)
self.policy_selector.start_step(train)
def end_step(self, train):
self.dead_lock_avoidance_agent.end_step(train)
self.learning_agent.end_step(train)
self.policy_selector.end_step(train)
def start_episode(self, train):
self.dead_lock_avoidance_agent.start_episode(train)
self.learning_agent.start_episode(train)
self.policy_selector.start_episode(train)
def end_episode(self, train):
self.dead_lock_avoidance_agent.end_episode(train)
self.learning_agent.end_episode(train)
self.policy_selector.end_episode(train)
def load_replay_buffer(self, filename):
self.dead_lock_avoidance_agent.load_replay_buffer(filename)
self.learning_agent.load_replay_buffer(filename)
self.policy_selector.load_replay_buffer(filename + ".selector")
def test(self):
self.dead_lock_avoidance_agent.test()
self.learning_agent.test()
self.policy_selector.test()
def reset(self, env: RailEnv):
self.env = env
self.dead_lock_avoidance_agent.reset(env)
self.learning_agent.reset(env)
self.policy_selector.reset(env)
def clone(self):
return self
import math
import multiprocessing
import os
import sys
from argparse import ArgumentParser, Namespace
from multiprocessing import Pool
from pathlib import Path
from pprint import pprint
import numpy as np
import torch
from flatland.envs.malfunction_generators import malfunction_from_params, MalfunctionParameters
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv
from flatland.envs.rail_generators import sparse_rail_generator
from flatland.envs.schedule_generators import sparse_schedule_generator
from flatland.utils.rendertools import RenderTool
base_dir = Path(__file__).resolve().parent.parent
sys.path.append(str(base_dir))
from utils.deadlock_check import check_if_all_blocked
from utils.timer import Timer
from utils.observation_utils import normalize_observation
from reinforcement_learning.dddqn_policy import DDDQNPolicy
def eval_policy(env_params, checkpoint, n_eval_episodes, max_steps, action_size, state_size, seed, render,
allow_skipping, allow_caching):
# Evaluation is faster on CPU (except if you use a really huge policy)
parameters = {
'use_gpu': False
}
policy = DDDQNPolicy(state_size, action_size, Namespace(**parameters), evaluation_mode=True)
policy.qnetwork_local = torch.load(checkpoint)
env_params = Namespace(**env_params)
# Environment parameters
n_agents = env_params.n_agents
x_dim = env_params.x_dim
y_dim = env_params.y_dim
n_cities = env_params.n_cities
max_rails_between_cities = env_params.max_rails_between_cities
max_rails_in_city = env_params.max_rails_in_city
# Malfunction and speed profiles
# TODO pass these parameters properly from main!
malfunction_parameters = MalfunctionParameters(
malfunction_rate=1. / 2000, # Rate of malfunctions
min_duration=20, # Minimal duration
max_duration=50 # Max duration
)
# Only fast trains in Round 1
speed_profiles = {
1.: 1.0, # Fast passenger train
1. / 2.: 0.0, # Fast freight train
1. / 3.: 0.0, # Slow commuter train
1. / 4.: 0.0 # Slow freight train
}
# Observation parameters
observation_tree_depth = env_params.observation_tree_depth
observation_radius = env_params.observation_radius
observation_max_path_depth = env_params.observation_max_path_depth
# Observation builder
predictor = ShortestPathPredictorForRailEnv(observation_max_path_depth)
tree_observation = TreeObsForRailEnv(max_depth=observation_tree_depth, predictor=predictor)
# Setup the environment
env = RailEnv(
width=x_dim, height=y_dim,
rail_generator=sparse_rail_generator(
max_num_cities=n_cities,
grid_mode=False,
max_rails_between_cities=max_rails_between_cities,
max_rails_in_city=max_rails_in_city,
),
schedule_generator=sparse_schedule_generator(speed_profiles),
number_of_agents=n_agents,
malfunction_generator_and_process_data=malfunction_from_params(malfunction_parameters),
obs_builder_object=tree_observation
)
if render:
env_renderer = RenderTool(env, gl="PGL")
action_dict = dict()
scores = []
completions = []
nb_steps = []
inference_times = []
preproc_times = []
agent_times = []
step_times = []
for episode_idx in range(n_eval_episodes):
seed += 1
inference_timer = Timer()
preproc_timer = Timer()
agent_timer = Timer()
step_timer = Timer()
step_timer.start()
obs, info = env.reset(regenerate_rail=True, regenerate_schedule=True, random_seed=seed)
step_timer.end()
agent_obs = [None] * env.get_num_agents()
score = 0.0
if render:
env_renderer.set_new_rail()
final_step = 0
skipped = 0
nb_hit = 0
agent_last_obs = {}
agent_last_action = {}
for step in range(max_steps - 1):
if allow_skipping and check_if_all_blocked(env):
# FIXME why -1? bug where all agents are "done" after max_steps!
skipped = max_steps - step - 1
final_step = max_steps - 2
n_unfinished_agents = sum(not done[idx] for idx in env.get_agent_handles())
score -= skipped * n_unfinished_agents
break
agent_timer.start()
for agent in env.get_agent_handles():
if obs[agent] and info['action_required'][agent]:
if agent in agent_last_obs and np.all(agent_last_obs[agent] == obs[agent]):
nb_hit += 1
action = agent_last_action[agent]
else:
preproc_timer.start()
norm_obs = normalize_observation(obs[agent], tree_depth=observation_tree_depth,
observation_radius=observation_radius)
preproc_timer.end()
inference_timer.start()
action = policy.act(agent, norm_obs, eps=0.0)
inference_timer.end()
action_dict.update({agent: action})
if allow_caching:
agent_last_obs[agent] = obs[agent]
agent_last_action[agent] = action
agent_timer.end()
step_timer.start()
obs, all_rewards, done, info = env.step(action_dict)
step_timer.end()
if render:
env_renderer.render_env(
show=True,
frames=False,
show_observations=False,
show_predictions=False
)
if step % 100 == 0:
print("{}/{}".format(step, max_steps - 1))
for agent in env.get_agent_handles():
score += all_rewards[agent]
final_step = step
if done['__all__']:
break
normalized_score = score / (max_steps * env.get_num_agents())
scores.append(normalized_score)
tasks_finished = sum(done[idx] for idx in env.get_agent_handles())
completion = tasks_finished / max(1, env.get_num_agents())
completions.append(completion)
nb_steps.append(final_step)
inference_times.append(inference_timer.get())
preproc_times.append(preproc_timer.get())
agent_times.append(agent_timer.get())
step_times.append(step_timer.get())
skipped_text = ""
if skipped > 0:
skipped_text = "\t⚡ Skipped {}".format(skipped)
hit_text = ""
if nb_hit > 0:
hit_text = "\t⚡ Hit {} ({:.1f}%)".format(nb_hit, (100 * nb_hit) / (n_agents * final_step))
print(
"☑️ Score: {:.3f} \tDone: {:.1f}% \tNb steps: {:.3f} "
"\t🍭 Seed: {}"
"\t🚉 Env: {:.3f}s "
"\t🤖 Agent: {:.3f}s (per step: {:.3f}s) \t[preproc: {:.3f}s \tinfer: {:.3f}s]"
"{}{}".format(
normalized_score,
completion * 100.0,
final_step,
seed,
step_timer.get(),
agent_timer.get(),
agent_timer.get() / final_step,
preproc_timer.get(),
inference_timer.get(),
skipped_text,
hit_text
)
)
return scores, completions, nb_steps, agent_times, step_times
def evaluate_agents(file, n_evaluation_episodes, use_gpu, render, allow_skipping, allow_caching):
nb_threads = 1
eval_per_thread = n_evaluation_episodes
if not render:
nb_threads = multiprocessing.cpu_count()
eval_per_thread = max(1, math.ceil(n_evaluation_episodes / nb_threads))
total_nb_eval = eval_per_thread * nb_threads
print("Will evaluate policy {} over {} episodes on {} threads.".format(file, total_nb_eval, nb_threads))
if total_nb_eval != n_evaluation_episodes:
print("(Rounding up from {} to fill all cores)".format(n_evaluation_episodes))
# Observation parameters need to match the ones used during training!
# small_v0
small_v0_params = {
# sample configuration
"n_agents": 5,
"x_dim": 25,
"y_dim": 25,
"n_cities": 4,
"max_rails_between_cities": 2,
"max_rails_in_city": 3,
# observations
"observation_tree_depth": 2,
"observation_radius": 10,
"observation_max_path_depth": 20
}
# Test_0
test0_params = {
# sample configuration
"n_agents": 5,
"x_dim": 25,
"y_dim": 25,
"n_cities": 2,
"max_rails_between_cities": 2,
"max_rails_in_city": 3,
# observations
"observation_tree_depth": 2,
"observation_radius": 10,
"observation_max_path_depth": 20
}
# Test_1
test1_params = {
# environment
"n_agents": 10,
"x_dim": 30,
"y_dim": 30,
"n_cities": 2,
"max_rails_between_cities": 2,
"max_rails_in_city": 3,
# observations
"observation_tree_depth": 2,
"observation_radius": 10,
"observation_max_path_depth": 10
}
# Test_5
test5_params = {
# environment
"n_agents": 80,
"x_dim": 35,
"y_dim": 35,
"n_cities": 5,
"max_rails_between_cities": 2,
"max_rails_in_city": 4,
# observations
"observation_tree_depth": 2,
"observation_radius": 10,
"observation_max_path_depth": 20
}
params = small_v0_params
env_params = Namespace(**params)
print("Environment parameters:")
pprint(params)
# Calculate space dimensions and max steps
max_steps = int(4 * 2 * (env_params.x_dim + env_params.y_dim + (env_params.n_agents / env_params.n_cities)))
action_size = 5
tree_observation = TreeObsForRailEnv(max_depth=env_params.observation_tree_depth)
tree_depth = env_params.observation_tree_depth
num_features_per_node = tree_observation.observation_dim
n_nodes = sum([np.power(4, i) for i in range(tree_depth + 1)])
state_size = num_features_per_node * n_nodes
results = []
if render:
results.append(
eval_policy(params, file, eval_per_thread, max_steps, action_size, state_size, 0, render, allow_skipping,
allow_caching))
else:
with Pool() as p:
results = p.starmap(eval_policy,
[(params, file, 1, max_steps, action_size, state_size, seed * nb_threads, render,
allow_skipping, allow_caching)
for seed in
range(total_nb_eval)])
scores = []
completions = []
nb_steps = []
times = []
step_times = []
for s, c, n, t, st in results:
scores.append(s)
completions.append(c)
nb_steps.append(n)
times.append(t)
step_times.append(st)
print("-" * 200)
print("✅ Score: {:.3f} \tDone: {:.1f}% \tNb steps: {:.3f} \tAgent total: {:.3f}s (per step: {:.3f}s)".format(
np.mean(scores),
np.mean(completions) * 100.0,
np.mean(nb_steps),
np.mean(times),
np.mean(times) / np.mean(nb_steps)
))
print("⏲️ Agent sum: {:.3f}s \tEnv sum: {:.3f}s \tTotal sum: {:.3f}s".format(
np.sum(times),
np.sum(step_times),
np.sum(times) + np.sum(step_times)
))
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-f", "--file", help="checkpoint to load", required=True, type=str)
parser.add_argument("-n", "--n_evaluation_episodes", help="number of evaluation episodes", default=25, type=int)
# TODO
# parser.add_argument("-e", "--evaluation_env_config", help="evaluation config id (eg 0 for Test_0)", default=0, type=int)
parser.add_argument("--use_gpu", dest="use_gpu", help="use GPU if available", action='store_true')
parser.add_argument("--render", help="render a single episode", action='store_true')
parser.add_argument("--allow_skipping", help="skips to the end of the episode if all agents are deadlocked",
action='store_true')
parser.add_argument("--allow_caching", help="caches the last observation-action pair", action='store_true')
args = parser.parse_args()
os.environ["OMP_NUM_THREADS"] = str(1)
evaluate_agents(file=args.file, n_evaluation_episodes=args.n_evaluation_episodes, use_gpu=args.use_gpu,
render=args.render,
allow_skipping=args.allow_skipping, allow_caching=args.allow_caching)
import torch.nn as nn
import torch.nn.functional as F
class DuelingQNetwork(nn.Module):
"""Dueling Q-network (https://arxiv.org/abs/1511.06581)"""
def __init__(self, state_size, action_size, hidsize1=128, hidsize2=128):
super(DuelingQNetwork, self).__init__()
# value network
self.fc1_val = nn.Linear(state_size, hidsize1)
self.fc2_val = nn.Linear(hidsize1, hidsize2)
self.fc4_val = nn.Linear(hidsize2, 1)
# advantage network
self.fc1_adv = nn.Linear(state_size, hidsize1)
self.fc2_adv = nn.Linear(hidsize1, hidsize2)
self.fc4_adv = nn.Linear(hidsize2, action_size)
def forward(self, x):
val = F.relu(self.fc1_val(x))
val = F.relu(self.fc2_val(val))
val = self.fc4_val(val)
# advantage calculation
adv = F.relu(self.fc1_adv(x))
adv = F.relu(self.fc2_adv(adv))
adv = self.fc4_adv(adv)
return val + adv - adv.mean()
This diff is collapsed.
from flatland.envs.rail_env import RailEnv
from reinforcement_learning.dddqn_policy import DDDQNPolicy
from reinforcement_learning.policy import LearningPolicy, DummyMemory
from reinforcement_learning.ppo_agent import PPOPolicy
class MultiDecisionAgent(LearningPolicy):
def __init__(self, state_size, action_size, in_parameters=None):
print(">> MultiDecisionAgent")
super(MultiDecisionAgent, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.in_parameters = in_parameters
self.memory = DummyMemory()
self.loss = 0
self.ppo_policy = PPOPolicy(state_size, action_size, use_replay_buffer=False, in_parameters=in_parameters)
self.dddqn_policy = DDDQNPolicy(state_size, action_size, in_parameters)
self.policy_selector = PPOPolicy(state_size, 2)
def step(self, handle, state, action, reward, next_state, done):
self.ppo_policy.step(handle, state, action, reward, next_state, done)
self.dddqn_policy.step(handle, state, action, reward, next_state, done)
select = self.policy_selector.act(handle, state, 0.0)
self.policy_selector.step(handle, state, select, reward, next_state, done)
def act(self, handle, state, eps=0.):
select = self.policy_selector.act(handle, state, eps)
if select == 0:
return self.dddqn_policy.act(handle, state, eps)
return self.policy_selector.act(handle, state, eps)
def save(self, filename):
self.ppo_policy.save(filename)
self.dddqn_policy.save(filename)
self.policy_selector.save(filename)
def load(self, filename):
self.ppo_policy.load(filename)
self.dddqn_policy.load(filename)
self.policy_selector.load(filename)
def start_step(self, train):
self.ppo_policy.start_step(train)
self.dddqn_policy.start_step(train)
self.policy_selector.start_step(train)
def end_step(self, train):
self.ppo_policy.end_step(train)
self.dddqn_policy.end_step(train)
self.policy_selector.end_step(train)
def start_episode(self, train):
self.ppo_policy.start_episode(train)
self.dddqn_policy.start_episode(train)
self.policy_selector.start_episode(train)
def end_episode(self, train):
self.ppo_policy.end_episode(train)
self.dddqn_policy.end_episode(train)
self.policy_selector.end_episode(train)
def load_replay_buffer(self, filename):
self.ppo_policy.load_replay_buffer(filename)
self.dddqn_policy.load_replay_buffer(filename)
self.policy_selector.load_replay_buffer(filename)
def test(self):
self.ppo_policy.test()
self.dddqn_policy.test()
self.policy_selector.test()
def reset(self, env: RailEnv):
self.ppo_policy.reset(env)
self.dddqn_policy.reset(env)
self.policy_selector.reset(env)
def clone(self):
multi_descision_agent = MultiDecisionAgent(
self.state_size,
self.action_size,
self.in_parameters
)
multi_descision_agent.ppo_policy = self.ppo_policy.clone()
multi_descision_agent.dddqn_policy = self.dddqn_policy.clone()
multi_descision_agent.policy_selector = self.policy_selector.clone()
return multi_descision_agent
import numpy as np
from flatland.envs.rail_env import RailEnv
from reinforcement_learning.policy import Policy
from reinforcement_learning.ppo_agent import PPOPolicy
from utils.dead_lock_avoidance_agent import DeadLockAvoidanceAgent
class MultiPolicy(Policy):
def __init__(self, state_size, action_size, n_agents, env):
self.state_size = state_size
self.action_size = action_size
self.memory = []
self.loss = 0
self.deadlock_avoidance_policy = DeadLockAvoidanceAgent(env, action_size, False)
self.ppo_policy = PPOPolicy(state_size + action_size, action_size)
def load(self, filename):
self.ppo_policy.load(filename)
self.deadlock_avoidance_policy.load(filename)
def save(self, filename):
self.ppo_policy.save(filename)
self.deadlock_avoidance_policy.save(filename)
def step(self, handle, state, action, reward, next_state, done):
action_extra_state = self.deadlock_avoidance_policy.act(handle, state, 0.0)
action_extra_next_state = self.deadlock_avoidance_policy.act(handle, next_state, 0.0)
extended_state = np.copy(state)
for action_itr in np.arange(self.action_size):
extended_state = np.append(extended_state, [int(action_extra_state == action_itr)])
extended_next_state = np.copy(next_state)
for action_itr in np.arange(self.action_size):
extended_next_state = np.append(extended_next_state, [int(action_extra_next_state == action_itr)])
self.deadlock_avoidance_policy.step(handle, state, action, reward, next_state, done)
self.ppo_policy.step(handle, extended_state, action, reward, extended_next_state, done)
def act(self, handle, state, eps=0.):
action_extra_state = self.deadlock_avoidance_policy.act(handle, state, 0.0)
extended_state = np.copy(state)
for action_itr in np.arange(self.action_size):
extended_state = np.append(extended_state, [int(action_extra_state == action_itr)])
action_ppo = self.ppo_policy.act(handle, extended_state, eps)
self.loss = self.ppo_policy.loss
return action_ppo
def reset(self, env: RailEnv):
self.ppo_policy.reset(env)
self.deadlock_avoidance_policy.reset(env)
def test(self):
self.ppo_policy.test()
self.deadlock_avoidance_policy.test()
def start_step(self, train):
self.deadlock_avoidance_policy.start_step(train)
self.ppo_policy.start_step(train)
def end_step(self, train):
self.deadlock_avoidance_policy.end_step(train)
self.ppo_policy.end_step(train)
import sys
from pathlib import Path
import numpy as np
from reinforcement_learning.policy import Policy
base_dir = Path(__file__).resolve().parent.parent
sys.path.append(str(base_dir))
from utils.observation_utils import split_tree_into_feature_groups, min_gt
class OrderedPolicy(Policy):
def __init__(self):
self.action_size = 5
def act(self, handle, state, eps=0.):
_, distance, _ = split_tree_into_feature_groups(state, 1)
distance = distance[1:]
min_dist = min_gt(distance, 0)
min_direction = np.where(distance == min_dist)
if len(min_direction[0]) > 1:
return min_direction[0][-1] + 1
return min_direction[0] + 1
def step(self, state, action, reward, next_state, done):
return
def save(self, filename):
return
def load(self, filename):
return