diff --git a/reinforcement_learning/multi_agent_training.py b/reinforcement_learning/multi_agent_training.py index 6a34939604b1d8d85fcbbd7f1c3693d8ad3ae48d..872f69503774bdaf6694e1d4241be2d8296a41fd 100755 --- a/reinforcement_learning/multi_agent_training.py +++ b/reinforcement_learning/multi_agent_training.py @@ -19,9 +19,9 @@ from flatland.utils.rendertools import RenderTool from torch.utils.tensorboard import SummaryWriter from reinforcement_learning.dddqn_policy import DDDQNPolicy -from reinforcement_learning.ppo_agent import PPOPolicy from reinforcement_learning.deadlockavoidance_with_decision_agent import DeadLockAvoidanceWithDecisionAgent from reinforcement_learning.multi_decision_agent import MultiDecisionAgent +from reinforcement_learning.ppo_agent import PPOPolicy from utils.agent_action_config import get_flatland_full_action_size, get_action_size, map_actions, map_action from utils.dead_lock_avoidance_agent import DeadLockAvoidanceAgent @@ -189,7 +189,7 @@ def train_agent(train_params, train_env_params, eval_env_params, obs_params): policy = DDDQNPolicy(state_size, get_action_size(), train_params) # Load existing policy - if train_params.load_policy is not "": + if train_params.load_policy is not '': policy.load(train_params.load_policy) # Loads existing replay buffer