diff --git a/reinforcement_learning/multi_agent_training.py b/reinforcement_learning/multi_agent_training.py
index 3e461fd9fe3e13aa341c8e4aab1cde6af2854bf7..e2ea4bfea061fc42e21978a580e25e8e8139449b 100755
--- a/reinforcement_learning/multi_agent_training.py
+++ b/reinforcement_learning/multi_agent_training.py
@@ -22,9 +22,9 @@ from torch.utils.tensorboard import SummaryWriter
 from reinforcement_learning.dddqn_policy import DDDQNPolicy
 from reinforcement_learning.ppo_agent import PPOAgent
 from reinforcement_learning.ppo_deadlockavoidance_agent import MultiDecisionAgent
+from utils.agent_action_config import get_flatland_full_action_size, get_action_size, map_actions, map_action
 from utils.dead_lock_avoidance_agent import DeadLockAvoidanceAgent
 from utils.deadlock_check import get_agent_positions, check_for_deadlock
-from utils.agent_action_config import get_flatland_full_action_size, get_action_size, map_actions, map_action
 
 base_dir = Path(__file__).resolve().parent.parent
 sys.path.append(str(base_dir))
@@ -174,9 +174,9 @@ def train_agent(train_params, train_env_params, eval_env_params, obs_params):
     policy = DDDQNPolicy(state_size, get_action_size(), train_params)
     if False:
         policy = PPOAgent(state_size, get_action_size())
-    if True:
+    if False:
         policy = DeadLockAvoidanceAgent(train_env, get_action_size())
-    if True:
+    if False:
         policy = MultiDecisionAgent(train_env, state_size, get_action_size(), policy)
 
     # Load existing policy
@@ -387,7 +387,7 @@ def train_agent(train_params, train_env_params, eval_env_params, obs_params):
             '\t 🎲 Epsilon: {:.3f} '
             '\t 🔀 Action Probs: {}'.format(
                 episode_idx,
-                train_env_params.n_agents, train_env.get_num_agents(),
+                train_env_params.n_agents, number_of_agents,
                 normalized_score,
                 smoothed_normalized_score,
                 100 * completion,
@@ -521,11 +521,11 @@ def eval_policy(env, tree_observation, policy, train_params, obs_params):
 if __name__ == "__main__":
     parser = ArgumentParser()
     parser.add_argument("-n", "--n_episodes", help="number of episodes to run", default=12000, type=int)
-    parser.add_argument("-t", "--training_env_config", help="training config id (eg 0 for Test_0)", default=2,
+    parser.add_argument("-t", "--training_env_config", help="training config id (eg 0 for Test_0)", default=3,
                         type=int)
-    parser.add_argument("-e", "--evaluation_env_config", help="evaluation config id (eg 0 for Test_0)", default=0,
+    parser.add_argument("-e", "--evaluation_env_config", help="evaluation config id (eg 0 for Test_0)", default=2,
                         type=int)
-    parser.add_argument("--n_evaluation_episodes", help="number of evaluation episodes", default=5, type=int)
+    parser.add_argument("--n_evaluation_episodes", help="number of evaluation episodes", default=10, type=int)
     parser.add_argument("--checkpoint_interval", help="checkpoint interval", default=100, type=int)
     parser.add_argument("--eps_start", help="max exploration", default=0.1, type=float)
     parser.add_argument("--eps_end", help="min exploration", default=0.005, type=float)
diff --git a/run.py b/run.py
index 0ba9acc5a0f976ea7373e6925ef67411978f1a42..998add015fca7d6b57b492131249076bd2382367 100644
--- a/run.py
+++ b/run.py
@@ -49,26 +49,18 @@ from reinforcement_learning.dddqn_policy import DDDQNPolicy
 # Print per-step logs
 VERBOSE = True
 USE_FAST_TREEOBS = True
-USE_PPO_AGENT = True
+USE_PPO_AGENT = False
 
 # Checkpoint to use (remember to push it!)
-checkpoint = "./checkpoints/201124171810-7800.pth"  # DDDQN: 18.249244799876152 DEPTH=2 AGENTS=10
-# checkpoint = "./checkpoints/201126150143-5200.pth" # DDDQN: 18.249244799876152 DEPTH=2 AGENTS=10
-# checkpoint = "./checkpoints/201126160144-2000.pth" # DDDQN: 18.249244799876152 DEPTH=2 AGENTS=10
-checkpoint = "./checkpoints/201207144650-20000.pth"  # PPO: 14.45790721540786
-checkpoint = "./checkpoints/201211063511-6300.pth"  # DDDQN: 16.948349308440857
-checkpoint = "./checkpoints/201211095604-12000.pth"  # DDDQN: 17.3862941316504
-checkpoint = "./checkpoints/201211164554-9400.pth"  # DDDQN: 16.09241366013537
-checkpoint = "./checkpoints/201213181400-6800.pth"  # PPO: 13.944402986414723
-checkpoint = "./checkpoints/201214140158-5000.pth"  # USE_MULTI_DECISION_AGENT with DDDQN: 13.944402986414723
-checkpoint = "./checkpoints/201215120518-3700.pth"  # USE_MULTI_DECISION_AGENT with PPO: 13.944402986414723
+checkpoint = "./checkpoints/201215160226-12000.pth"  #
+# checkpoint = "./checkpoints/201215212134-12000.pth"  #
 
 EPSILON = 0.0
 
 # Use last action cache
 USE_ACTION_CACHE = False
 USE_DEAD_LOCK_AVOIDANCE_AGENT = False  # 21.54485505223213
-USE_MULTI_DECISION_AGENT = False
+USE_MULTI_DECISION_AGENT = True
 
 # Observation parameters (must match training parameters!)
 observation_tree_depth = 2