run.py 6.67 KB
Newer Older
spmohanty's avatar
spmohanty committed
1
from flatland.evaluators.client import FlatlandRemoteClient
2 3
from flatland.core.env_observation_builder import DummyObservationBuilder
from my_observation_builder import CustomObservationBuilder
spmohanty's avatar
spmohanty committed
4
import numpy as np
5
import time
spmohanty's avatar
spmohanty committed
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22



#####################################################################
# Instantiate a Remote Client
#####################################################################
remote_client = FlatlandRemoteClient()

#####################################################################
# Define your custom controller
#
# which can take an observation, and the number of agents and 
# compute the necessary action for this step for all (or even some)
# of the agents
#####################################################################
def my_controller(obs, number_of_agents):
    _action = {}
spmohanty's avatar
spmohanty committed
23
    for _idx in range(number_of_agents):
spmohanty's avatar
spmohanty committed
24 25 26 27 28 29 30 31 32 33
        _action[_idx] = np.random.randint(0, 5)
    return _action

#####################################################################
# Instantiate your custom Observation Builder
# 
# You can build your own Observation Builder by following 
# the example here : 
# https://gitlab.aicrowd.com/flatland/flatland/blob/master/flatland/envs/observations.py#L14
#####################################################################
34 35 36 37 38 39 40 41
my_observation_builder = CustomObservationBuilder()

# Or if you want to use your own approach to build the observation from the env_step, 
# please feel free to pass a DummyObservationBuilder() object as mentioned below,
# and that will just return a placeholder True for all observation, and you 
# can build your own Observation for all the agents as your please.
# my_observation_builder = DummyObservationBuilder()

spmohanty's avatar
spmohanty committed
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

#####################################################################
# Main evaluation loop
#
# This iterates over an arbitrary number of env evaluations
#####################################################################
evaluation_number = 0
while True:

    evaluation_number += 1
    # Switch to a new evaluation environemnt
    # 
    # a remote_client.env_create is similar to instantiating a 
    # RailEnv and then doing a env.reset()
    # hence it returns the first observation from the 
    # env.reset()
    # 
    # You can also pass your custom observation_builder object
    # to allow you to have as much control as you wish 
    # over the observation of your choice.
62
    time_start = time.time()
63
    observation, info = remote_client.env_create(
spmohanty's avatar
spmohanty committed
64 65
                    obs_builder_object=my_observation_builder
                )
66
    env_creation_time = time.time() - time_start
spmohanty's avatar
spmohanty committed
67 68 69 70 71 72 73 74
    if not observation:
        #
        # If the remote_client returns False on a `env_create` call,
        # then it basically means that your agent has already been 
        # evaluated on all the required evaluation environments,
        # and hence its safe to break out of the main evaluation loop
        break
    
75
    print("Evaluation Number : {}".format(evaluation_number))
spmohanty's avatar
spmohanty committed
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

    #####################################################################
    # Access to a local copy of the environment
    # 
    #####################################################################
    # Note: You can access a local copy of the environment 
    # by using : 
    #       remote_client.env 
    # 
    # But please ensure to not make any changes (or perform any action) on 
    # the local copy of the env, as then it will diverge from 
    # the state of the remote copy of the env, and the observations and 
    # rewards, etc will behave unexpectedly
    # 
    # You can however probe the local_env instance to get any information
    # you need from the environment. It is a valid RailEnv instance.
    local_env = remote_client.env
    number_of_agents = len(local_env.agents)

    # Now we enter into another infinite loop where we 
    # compute the actions for all the individual steps in this episode
    # until the episode is `done`
    # 
    # An episode is considered done when either all the agents have 
    # reached their target destination
    # or when the number of time steps has exceed max_time_steps, which 
    # is defined by : 
    #
104
    # max_time_steps = int(4 * 2 * (env.width + env.height + 20))
spmohanty's avatar
spmohanty committed
105
    #
106 107
    time_taken_by_controller = []
    time_taken_per_step = []
108 109
    steps = 0
    while True:
spmohanty's avatar
spmohanty committed
110 111 112 113 114
        #####################################################################
        # Evaluation of a single episode
        #
        #####################################################################
        # Compute the action for this step by using the previously 
115 116
        # defined controller
        time_start = time.time()
spmohanty's avatar
spmohanty committed
117
        action = my_controller(observation, number_of_agents)
118 119
        time_taken = time.time() - time_start
        time_taken_by_controller.append(time_taken)
spmohanty's avatar
spmohanty committed
120 121 122 123 124 125

        # Perform the chosen action on the environment.
        # The action gets applied to both the local and the remote copy 
        # of the environment instance, and the observation is what is 
        # returned by the local copy of the env, and the rewards, and done and info
        # are returned by the remote copy of the env
126
        time_start = time.time()
spmohanty's avatar
spmohanty committed
127
        observation, all_rewards, done, info = remote_client.env_step(action)
128
        steps += 1
129 130 131
        time_taken = time.time() - time_start
        time_taken_per_step.append(time_taken)

spmohanty's avatar
spmohanty committed
132 133 134 135 136 137 138
        if done['__all__']:
            print("Reward : ", sum(list(all_rewards.values())))
            #
            # When done['__all__'] == True, then the evaluation of this 
            # particular Env instantiation is complete, and we can break out 
            # of this loop, and move onto the next Env evaluation
            break
139 140 141 142 143 144 145
    
    np_time_taken_by_controller = np.array(time_taken_by_controller)
    np_time_taken_per_step = np.array(time_taken_per_step)
    print("="*100)
    print("="*100)
    print("Evaluation Number : ", evaluation_number)
    print("Current Env Path : ", remote_client.current_env_path)
146 147
    print("Env Creation Time : ", env_creation_time)
    print("Number of Steps : ", steps)
148 149 150
    print("Mean/Std of Time taken by Controller : ", np_time_taken_by_controller.mean(), np_time_taken_by_controller.std())
    print("Mean/Std of Time per Step : ", np_time_taken_per_step.mean(), np_time_taken_per_step.std())
    print("="*100)
spmohanty's avatar
spmohanty committed
151 152 153 154 155 156 157 158 159 160

print("Evaluation of all environments complete...")
########################################################################
# Submit your Results
# 
# Please do not forget to include this call, as this triggers the 
# final computation of the score statistics, video generation, etc
# and is necesaary to have your submission marked as successfully evaluated
########################################################################
print(remote_client.submit())