model.py 119 KB
Newer Older
nikhil_rayaprolu's avatar
nikhil_rayaprolu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
Mask R-CNN
The main Mask R-CNN model implemenetation.

Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla
"""

import os
import random
import datetime
import re
import math
import logging
from collections import OrderedDict
import multiprocessing
import numpy as np
import skimage.transform
import tensorflow as tf
import keras
import keras.backend as K
import keras.layers as KL
import keras.engine as KE
import keras.models as KM
from keras.callbacks import EarlyStopping
from mrcnn import utils

# Requires TensorFlow 1.3+ and Keras 2.0.8+.
from distutils.version import LooseVersion
assert LooseVersion(tf.__version__) >= LooseVersion("1.3")
assert LooseVersion(keras.__version__) >= LooseVersion('2.0.8')


############################################################
#  Utility Functions
############################################################

def log(text, array=None):
    """Prints a text message. And, optionally, if a Numpy array is provided it
    prints it's shape, min, and max values.
    """
    if array is not None:
        text = text.ljust(25)
        text += ("shape: {:20}  min: {:10.5f}  max: {:10.5f}  {}".format(
            str(array.shape),
            array.min() if array.size else "",
            array.max() if array.size else "",
            array.dtype))
    print(text)


class BatchNorm(KL.BatchNormalization):
    """Extends the Keras BatchNormalization class to allow a central place
    to make changes if needed.

    Batch normalization has a negative effect on training if batches are small
    so this layer is often frozen (via setting in Config class) and functions
    as linear layer.
    """
    def call(self, inputs, training=None):
        """
        Note about training values:
            None: Train BN layers. This is the normal mode
            False: Freeze BN layers. Good when batch size is small
            True: (don't use). Set layer in training mode even when inferencing
        """
        return super(self.__class__, self).call(inputs, training=training)


def compute_backbone_shapes(config, image_shape):
    """Computes the width and height of each stage of the backbone network.
Ubuntu's avatar
Ubuntu committed
73

nikhil_rayaprolu's avatar
nikhil_rayaprolu committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
    Returns:
        [N, (height, width)]. Where N is the number of stages
    """
    # Currently supports ResNet only
    assert config.BACKBONE in ["resnet50", "resnet101"]
    return np.array(
        [[int(math.ceil(image_shape[0] / stride)),
            int(math.ceil(image_shape[1] / stride))]
            for stride in config.BACKBONE_STRIDES])


############################################################
#  Resnet Graph
############################################################

# Code adopted from:
# https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py

def identity_block(input_tensor, kernel_size, filters, stage, block,
                   use_bias=True, train_bn=True):
    """The identity_block is the block that has no conv layer at shortcut
    # Arguments
        input_tensor: input tensor
        kernel_size: defualt 3, the kernel size of middle conv layer at main path
        filters: list of integers, the nb_filters of 3 conv layer at main path
        stage: integer, current stage label, used for generating layer names
        block: 'a','b'..., current block label, used for generating layer names
        use_bias: Boolean. To use or not use a bias in conv layers.
        train_bn: Boolean. Train or freeze Batch Norm layres
    """
    nb_filter1, nb_filter2, nb_filter3 = filters
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = KL.Conv2D(nb_filter1, (1, 1), name=conv_name_base + '2a',
                  use_bias=use_bias)(input_tensor)
    x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same',
                  name=conv_name_base + '2b', use_bias=use_bias)(x)
    x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + '2c',
                  use_bias=use_bias)(x)
    x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn)

    x = KL.Add()([x, input_tensor])
    x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x)
    return x


def conv_block(input_tensor, kernel_size, filters, stage, block,
               strides=(2, 2), use_bias=True, train_bn=True):
    """conv_block is the block that has a conv layer at shortcut
    # Arguments
        input_tensor: input tensor
        kernel_size: defualt 3, the kernel size of middle conv layer at main path
        filters: list of integers, the nb_filters of 3 conv layer at main path
        stage: integer, current stage label, used for generating layer names
        block: 'a','b'..., current block label, used for generating layer names
        use_bias: Boolean. To use or not use a bias in conv layers.
        train_bn: Boolean. Train or freeze Batch Norm layres
    Note that from stage 3, the first conv layer at main path is with subsample=(2,2)
    And the shortcut should have subsample=(2,2) as well
    """
    nb_filter1, nb_filter2, nb_filter3 = filters
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = KL.Conv2D(nb_filter1, (1, 1), strides=strides,
                  name=conv_name_base + '2a', use_bias=use_bias)(input_tensor)
    x = BatchNorm(name=bn_name_base + '2a')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.Conv2D(nb_filter2, (kernel_size, kernel_size), padding='same',
                  name=conv_name_base + '2b', use_bias=use_bias)(x)
    x = BatchNorm(name=bn_name_base + '2b')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base +
                  '2c', use_bias=use_bias)(x)
    x = BatchNorm(name=bn_name_base + '2c')(x, training=train_bn)

    shortcut = KL.Conv2D(nb_filter3, (1, 1), strides=strides,
                         name=conv_name_base + '1', use_bias=use_bias)(input_tensor)
    shortcut = BatchNorm(name=bn_name_base + '1')(shortcut, training=train_bn)

    x = KL.Add()([x, shortcut])
    x = KL.Activation('relu', name='res' + str(stage) + block + '_out')(x)
    return x


def resnet_graph(input_image, architecture, stage5=False, train_bn=True):
    """Build a ResNet graph.
        architecture: Can be resnet50 or resnet101
        stage5: Boolean. If False, stage5 of the network is not created
        train_bn: Boolean. Train or freeze Batch Norm layres
    """
    assert architecture in ["resnet50", "resnet101"]
    # Stage 1
    x = KL.ZeroPadding2D((3, 3))(input_image)
    x = KL.Conv2D(64, (7, 7), strides=(2, 2), name='conv1', use_bias=True)(x)
    x = BatchNorm(name='bn_conv1')(x, training=train_bn)
    x = KL.Activation('relu')(x)
    C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)
    # Stage 2
    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), train_bn=train_bn)
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', train_bn=train_bn)
    C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', train_bn=train_bn)
    # Stage 3
    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', train_bn=train_bn)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', train_bn=train_bn)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', train_bn=train_bn)
    C3 = x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', train_bn=train_bn)
    # Stage 4
    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', train_bn=train_bn)
    block_count = {"resnet50": 5, "resnet101": 22}[architecture]
    for i in range(block_count):
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn)
    C4 = x
    # Stage 5
    if stage5:
        x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a', train_bn=train_bn)
        x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b', train_bn=train_bn)
        C5 = x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c', train_bn=train_bn)
    else:
        C5 = None
    return [C1, C2, C3, C4, C5]


############################################################
#  Proposal Layer
############################################################

def apply_box_deltas_graph(boxes, deltas):
    """Applies the given deltas to the given boxes.
    boxes: [N, (y1, x1, y2, x2)] boxes to update
    deltas: [N, (dy, dx, log(dh), log(dw))] refinements to apply
    """
    # Convert to y, x, h, w
    height = boxes[:, 2] - boxes[:, 0]
    width = boxes[:, 3] - boxes[:, 1]
    center_y = boxes[:, 0] + 0.5 * height
    center_x = boxes[:, 1] + 0.5 * width
    # Apply deltas
    center_y += deltas[:, 0] * height
    center_x += deltas[:, 1] * width
    height *= tf.exp(deltas[:, 2])
    width *= tf.exp(deltas[:, 3])
    # Convert back to y1, x1, y2, x2
    y1 = center_y - 0.5 * height
    x1 = center_x - 0.5 * width
    y2 = y1 + height
    x2 = x1 + width
    result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out")
    return result


def clip_boxes_graph(boxes, window):
    """
    boxes: [N, (y1, x1, y2, x2)]
    window: [4] in the form y1, x1, y2, x2
    """
    # Split
    wy1, wx1, wy2, wx2 = tf.split(window, 4)
    y1, x1, y2, x2 = tf.split(boxes, 4, axis=1)
    # Clip
    y1 = tf.maximum(tf.minimum(y1, wy2), wy1)
    x1 = tf.maximum(tf.minimum(x1, wx2), wx1)
    y2 = tf.maximum(tf.minimum(y2, wy2), wy1)
    x2 = tf.maximum(tf.minimum(x2, wx2), wx1)
    clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes")
    clipped.set_shape((clipped.shape[0], 4))
    return clipped


class ProposalLayer(KE.Layer):
    """Receives anchor scores and selects a subset to pass as proposals
    to the second stage. Filtering is done based on anchor scores and
    non-max suppression to remove overlaps. It also applies bounding
    box refinement deltas to anchors.

    Inputs:
        rpn_probs: [batch, anchors, (bg prob, fg prob)]
        rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))]
        anchors: [batch, (y1, x1, y2, x2)] anchors in normalized coordinates

    Returns:
        Proposals in normalized coordinates [batch, rois, (y1, x1, y2, x2)]
    """

    def __init__(self, proposal_count, nms_threshold, config=None, **kwargs):
        super(ProposalLayer, self).__init__(**kwargs)
        self.config = config
        self.proposal_count = proposal_count
        self.nms_threshold = nms_threshold

    def call(self, inputs):
        # Box Scores. Use the foreground class confidence. [Batch, num_rois, 1]
        scores = inputs[0][:, :, 1]
        # Box deltas [batch, num_rois, 4]
        deltas = inputs[1]
        deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4])
        # Anchors
        anchors = inputs[2]

        # Improve performance by trimming to top anchors by score
        # and doing the rest on the smaller subset.
        pre_nms_limit = tf.minimum(6000, tf.shape(anchors)[1])
        ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True,
                         name="top_anchors").indices
        scores = utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y),
                                   self.config.IMAGES_PER_GPU)
        deltas = utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y),
                                   self.config.IMAGES_PER_GPU)
        pre_nms_anchors = utils.batch_slice([anchors, ix], lambda a, x: tf.gather(a, x),
                                    self.config.IMAGES_PER_GPU,
                                    names=["pre_nms_anchors"])

        # Apply deltas to anchors to get refined anchors.
        # [batch, N, (y1, x1, y2, x2)]
        boxes = utils.batch_slice([pre_nms_anchors, deltas],
                                  lambda x, y: apply_box_deltas_graph(x, y),
                                  self.config.IMAGES_PER_GPU,
                                  names=["refined_anchors"])

        # Clip to image boundaries. Since we're in normalized coordinates,
        # clip to 0..1 range. [batch, N, (y1, x1, y2, x2)]
        window = np.array([0, 0, 1, 1], dtype=np.float32)
        boxes = utils.batch_slice(boxes,
                                  lambda x: clip_boxes_graph(x, window),
                                  self.config.IMAGES_PER_GPU,
                                  names=["refined_anchors_clipped"])

        # Filter out small boxes
        # According to Xinlei Chen's paper, this reduces detection accuracy
        # for small objects, so we're skipping it.

        # Non-max suppression
        def nms(boxes, scores):
            indices = tf.image.non_max_suppression(
                boxes, scores, self.proposal_count,
                self.nms_threshold, name="rpn_non_max_suppression")
            proposals = tf.gather(boxes, indices)
            # Pad if needed
            padding = tf.maximum(self.proposal_count - tf.shape(proposals)[0], 0)
            proposals = tf.pad(proposals, [(0, padding), (0, 0)])
            return proposals
        proposals = utils.batch_slice([boxes, scores], nms,
                                      self.config.IMAGES_PER_GPU)
        return proposals

    def compute_output_shape(self, input_shape):
        return (None, self.proposal_count, 4)


############################################################
#  ROIAlign Layer
############################################################

def log2_graph(x):
    """Implementatin of Log2. TF doesn't have a native implemenation."""
    return tf.log(x) / tf.log(2.0)


class PyramidROIAlign(KE.Layer):
    """Implements ROI Pooling on multiple levels of the feature pyramid.

    Params:
    - pool_shape: [height, width] of the output pooled regions. Usually [7, 7]

    Inputs:
    - boxes: [batch, num_boxes, (y1, x1, y2, x2)] in normalized
             coordinates. Possibly padded with zeros if not enough
             boxes to fill the array.
    - image_meta: [batch, (meta data)] Image details. See compose_image_meta()
    - Feature maps: List of feature maps from different levels of the pyramid.
                    Each is [batch, height, width, channels]

    Output:
    Pooled regions in the shape: [batch, num_boxes, height, width, channels].
    The width and height are those specific in the pool_shape in the layer
    constructor.
    """

    def __init__(self, pool_shape, **kwargs):
        super(PyramidROIAlign, self).__init__(**kwargs)
        self.pool_shape = tuple(pool_shape)

    def call(self, inputs):
        # Crop boxes [batch, num_boxes, (y1, x1, y2, x2)] in normalized coords
        boxes = inputs[0]

        # Image meta
        # Holds details about the image. See compose_image_meta()
        image_meta = inputs[1]

        # Feature Maps. List of feature maps from different level of the
        # feature pyramid. Each is [batch, height, width, channels]
        feature_maps = inputs[2:]

        # Assign each ROI to a level in the pyramid based on the ROI area.
        y1, x1, y2, x2 = tf.split(boxes, 4, axis=2)
        h = y2 - y1
        w = x2 - x1
        # Use shape of first image. Images in a batch must have the same size.
        image_shape = parse_image_meta_graph(image_meta)['image_shape'][0]
        # Equation 1 in the Feature Pyramid Networks paper. Account for
        # the fact that our coordinates are normalized here.
        # e.g. a 224x224 ROI (in pixels) maps to P4
        image_area = tf.cast(image_shape[0] * image_shape[1], tf.float32)
        roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area)))
        roi_level = tf.minimum(5, tf.maximum(
            2, 4 + tf.cast(tf.round(roi_level), tf.int32)))
        roi_level = tf.squeeze(roi_level, 2)

        # Loop through levels and apply ROI pooling to each. P2 to P5.
        pooled = []
        box_to_level = []
        for i, level in enumerate(range(2, 6)):
            ix = tf.where(tf.equal(roi_level, level))
            level_boxes = tf.gather_nd(boxes, ix)

            # Box indicies for crop_and_resize.
            box_indices = tf.cast(ix[:, 0], tf.int32)

            # Keep track of which box is mapped to which level
            box_to_level.append(ix)

            # Stop gradient propogation to ROI proposals
            level_boxes = tf.stop_gradient(level_boxes)
            box_indices = tf.stop_gradient(box_indices)

            # Crop and Resize
            # From Mask R-CNN paper: "We sample four regular locations, so
            # that we can evaluate either max or average pooling. In fact,
            # interpolating only a single value at each bin center (without
            # pooling) is nearly as effective."
            #
            # Here we use the simplified approach of a single value per bin,
            # which is how it's done in tf.crop_and_resize()
            # Result: [batch * num_boxes, pool_height, pool_width, channels]
            pooled.append(tf.image.crop_and_resize(
                feature_maps[i], level_boxes, box_indices, self.pool_shape,
                method="bilinear"))

        # Pack pooled features into one tensor
        pooled = tf.concat(pooled, axis=0)

        # Pack box_to_level mapping into one array and add another
        # column representing the order of pooled boxes
        box_to_level = tf.concat(box_to_level, axis=0)
        box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1)
        box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range],
                                 axis=1)

        # Rearrange pooled features to match the order of the original boxes
        # Sort box_to_level by batch then box index
        # TF doesn't have a way to sort by two columns, so merge them and sort.
        sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1]
        ix = tf.nn.top_k(sorting_tensor, k=tf.shape(
            box_to_level)[0]).indices[::-1]
        ix = tf.gather(box_to_level[:, 2], ix)
        pooled = tf.gather(pooled, ix)

        # Re-add the batch dimension
        pooled = tf.expand_dims(pooled, 0)
        return pooled

    def compute_output_shape(self, input_shape):
        return input_shape[0][:2] + self.pool_shape + (input_shape[2][-1], )


############################################################
#  Detection Target Layer
############################################################

def overlaps_graph(boxes1, boxes2):
    """Computes IoU overlaps between two sets of boxes.
    boxes1, boxes2: [N, (y1, x1, y2, x2)].
    """
    # 1. Tile boxes2 and repeate boxes1. This allows us to compare
    # every boxes1 against every boxes2 without loops.
    # TF doesn't have an equivalent to np.repeate() so simulate it
    # using tf.tile() and tf.reshape.
    b1 = tf.reshape(tf.tile(tf.expand_dims(boxes1, 1),
                            [1, 1, tf.shape(boxes2)[0]]), [-1, 4])
    b2 = tf.tile(boxes2, [tf.shape(boxes1)[0], 1])
    # 2. Compute intersections
    b1_y1, b1_x1, b1_y2, b1_x2 = tf.split(b1, 4, axis=1)
    b2_y1, b2_x1, b2_y2, b2_x2 = tf.split(b2, 4, axis=1)
    y1 = tf.maximum(b1_y1, b2_y1)
    x1 = tf.maximum(b1_x1, b2_x1)
    y2 = tf.minimum(b1_y2, b2_y2)
    x2 = tf.minimum(b1_x2, b2_x2)
    intersection = tf.maximum(x2 - x1, 0) * tf.maximum(y2 - y1, 0)
    # 3. Compute unions
    b1_area = (b1_y2 - b1_y1) * (b1_x2 - b1_x1)
    b2_area = (b2_y2 - b2_y1) * (b2_x2 - b2_x1)
    union = b1_area + b2_area - intersection
    # 4. Compute IoU and reshape to [boxes1, boxes2]
    iou = intersection / union
    overlaps = tf.reshape(iou, [tf.shape(boxes1)[0], tf.shape(boxes2)[0]])
    return overlaps


def detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks, config):
    """Generates detection targets for one image. Subsamples proposals and
    generates target class IDs, bounding box deltas, and masks for each.

    Inputs:
    proposals: [N, (y1, x1, y2, x2)] in normalized coordinates. Might
               be zero padded if there are not enough proposals.
    gt_class_ids: [MAX_GT_INSTANCES] int class IDs
    gt_boxes: [MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates.
    gt_masks: [height, width, MAX_GT_INSTANCES] of boolean type.

    Returns: Target ROIs and corresponding class IDs, bounding box shifts,
    and masks.
    rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates
    class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. Zero padded.
    deltas: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
            Class-specific bbox refinements.
    masks: [TRAIN_ROIS_PER_IMAGE, height, width). Masks cropped to bbox
           boundaries and resized to neural network output size.

    Note: Returned arrays might be zero padded if not enough target ROIs.
    """
    # Assertions
    asserts = [
        tf.Assert(tf.greater(tf.shape(proposals)[0], 0), [proposals],
                  name="roi_assertion"),
    ]
    with tf.control_dependencies(asserts):
        proposals = tf.identity(proposals)

    # Remove zero padding
    proposals, _ = trim_zeros_graph(proposals, name="trim_proposals")
    gt_boxes, non_zeros = trim_zeros_graph(gt_boxes, name="trim_gt_boxes")
    gt_class_ids = tf.boolean_mask(gt_class_ids, non_zeros,
                                   name="trim_gt_class_ids")
    gt_masks = tf.gather(gt_masks, tf.where(non_zeros)[:, 0], axis=2,
                         name="trim_gt_masks")

    # Handle COCO crowds
    # A crowd box in COCO is a bounding box around several instances. Exclude
    # them from training. A crowd box is given a negative class ID.
    crowd_ix = tf.where(gt_class_ids < 0)[:, 0]
    non_crowd_ix = tf.where(gt_class_ids > 0)[:, 0]
    crowd_boxes = tf.gather(gt_boxes, crowd_ix)
    crowd_masks = tf.gather(gt_masks, crowd_ix, axis=2)
    gt_class_ids = tf.gather(gt_class_ids, non_crowd_ix)
    gt_boxes = tf.gather(gt_boxes, non_crowd_ix)
    gt_masks = tf.gather(gt_masks, non_crowd_ix, axis=2)

    # Compute overlaps matrix [proposals, gt_boxes]
    overlaps = overlaps_graph(proposals, gt_boxes)

    # Compute overlaps with crowd boxes [anchors, crowds]
    crowd_overlaps = overlaps_graph(proposals, crowd_boxes)
    crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1)
    no_crowd_bool = (crowd_iou_max < 0.001)

    # Determine postive and negative ROIs
    roi_iou_max = tf.reduce_max(overlaps, axis=1)
    # 1. Positive ROIs are those with >= 0.5 IoU with a GT box
    positive_roi_bool = (roi_iou_max >= 0.5)
    positive_indices = tf.where(positive_roi_bool)[:, 0]
    # 2. Negative ROIs are those with < 0.5 with every GT box. Skip crowds.
    negative_indices = tf.where(tf.logical_and(roi_iou_max < 0.5, no_crowd_bool))[:, 0]

    # Subsample ROIs. Aim for 33% positive
    # Positive ROIs
    positive_count = int(config.TRAIN_ROIS_PER_IMAGE *
                         config.ROI_POSITIVE_RATIO)
    positive_indices = tf.random_shuffle(positive_indices)[:positive_count]
    positive_count = tf.shape(positive_indices)[0]
    # Negative ROIs. Add enough to maintain positive:negative ratio.
    r = 1.0 / config.ROI_POSITIVE_RATIO
    negative_count = tf.cast(r * tf.cast(positive_count, tf.float32), tf.int32) - positive_count
    negative_indices = tf.random_shuffle(negative_indices)[:negative_count]
    # Gather selected ROIs
    positive_rois = tf.gather(proposals, positive_indices)
    negative_rois = tf.gather(proposals, negative_indices)

    # Assign positive ROIs to GT boxes.
    positive_overlaps = tf.gather(overlaps, positive_indices)
    roi_gt_box_assignment = tf.argmax(positive_overlaps, axis=1)
    roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment)
    roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment)

    # Compute bbox refinement for positive ROIs
    deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes)
    deltas /= config.BBOX_STD_DEV

    # Assign positive ROIs to GT masks
    # Permute masks to [N, height, width, 1]
    transposed_masks = tf.expand_dims(tf.transpose(gt_masks, [2, 0, 1]), -1)
    # Pick the right mask for each ROI
    roi_masks = tf.gather(transposed_masks, roi_gt_box_assignment)

    # Compute mask targets
    boxes = positive_rois
    if config.USE_MINI_MASK:
        # Transform ROI corrdinates from normalized image space
        # to normalized mini-mask space.
        y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1)
        gt_y1, gt_x1, gt_y2, gt_x2 = tf.split(roi_gt_boxes, 4, axis=1)
        gt_h = gt_y2 - gt_y1
        gt_w = gt_x2 - gt_x1
        y1 = (y1 - gt_y1) / gt_h
        x1 = (x1 - gt_x1) / gt_w
        y2 = (y2 - gt_y1) / gt_h
        x2 = (x2 - gt_x1) / gt_w
        boxes = tf.concat([y1, x1, y2, x2], 1)
    box_ids = tf.range(0, tf.shape(roi_masks)[0])
    masks = tf.image.crop_and_resize(tf.cast(roi_masks, tf.float32), boxes,
                                     box_ids,
                                     config.MASK_SHAPE)
    # Remove the extra dimension from masks.
    masks = tf.squeeze(masks, axis=3)

    # Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with
    # binary cross entropy loss.
    masks = tf.round(masks)

    # Append negative ROIs and pad bbox deltas and masks that
    # are not used for negative ROIs with zeros.
    rois = tf.concat([positive_rois, negative_rois], axis=0)
    N = tf.shape(negative_rois)[0]
    P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0)
    rois = tf.pad(rois, [(0, P), (0, 0)])
    roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)])
    roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)])
    deltas = tf.pad(deltas, [(0, N + P), (0, 0)])
    masks = tf.pad(masks, [[0, N + P], (0, 0), (0, 0)])

    return rois, roi_gt_class_ids, deltas, masks


class DetectionTargetLayer(KE.Layer):
    """Subsamples proposals and generates target box refinement, class_ids,
    and masks for each.

    Inputs:
    proposals: [batch, N, (y1, x1, y2, x2)] in normalized coordinates. Might
               be zero padded if there are not enough proposals.
    gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs.
    gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized
              coordinates.
    gt_masks: [batch, height, width, MAX_GT_INSTANCES] of boolean type

    Returns: Target ROIs and corresponding class IDs, bounding box shifts,
    and masks.
    rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized
          coordinates
    target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]. Integer class IDs.
    target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, NUM_CLASSES,
                    (dy, dx, log(dh), log(dw), class_id)]
                   Class-specific bbox refinements.
    target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width)
                 Masks cropped to bbox boundaries and resized to neural
                 network output size.

    Note: Returned arrays might be zero padded if not enough target ROIs.
    """

    def __init__(self, config, **kwargs):
        super(DetectionTargetLayer, self).__init__(**kwargs)
        self.config = config

    def call(self, inputs):
        proposals = inputs[0]
        gt_class_ids = inputs[1]
        gt_boxes = inputs[2]
        gt_masks = inputs[3]

        # Slice the batch and run a graph for each slice
        # TODO: Rename target_bbox to target_deltas for clarity
        names = ["rois", "target_class_ids", "target_bbox", "target_mask"]
        outputs = utils.batch_slice(
            [proposals, gt_class_ids, gt_boxes, gt_masks],
            lambda w, x, y, z: detection_targets_graph(
                w, x, y, z, self.config),
            self.config.IMAGES_PER_GPU, names=names)
        return outputs

    def compute_output_shape(self, input_shape):
        return [
            (None, self.config.TRAIN_ROIS_PER_IMAGE, 4),  # rois
            (None, 1),  # class_ids
            (None, self.config.TRAIN_ROIS_PER_IMAGE, 4),  # deltas
            (None, self.config.TRAIN_ROIS_PER_IMAGE, self.config.MASK_SHAPE[0],
             self.config.MASK_SHAPE[1])  # masks
        ]

    def compute_mask(self, inputs, mask=None):
        return [None, None, None, None]


############################################################
#  Detection Layer
############################################################

def refine_detections_graph(rois, probs, deltas, window, config):
    """Refine classified proposals and filter overlaps and return final
    detections.

    Inputs:
        rois: [N, (y1, x1, y2, x2)] in normalized coordinates
        probs: [N, num_classes]. Class probabilities.
        deltas: [N, num_classes, (dy, dx, log(dh), log(dw))]. Class-specific
                bounding box deltas.
        window: (y1, x1, y2, x2) in image coordinates. The part of the image
            that contains the image excluding the padding.

    Returns detections shaped: [N, (y1, x1, y2, x2, class_id, score)] where
        coordinates are normalized.
    """
    # Class IDs per ROI
    class_ids = tf.argmax(probs, axis=1, output_type=tf.int32)
    # Class probability of the top class of each ROI
    indices = tf.stack([tf.range(probs.shape[0]), class_ids], axis=1)
    class_scores = tf.gather_nd(probs, indices)
    # Class-specific bounding box deltas
    deltas_specific = tf.gather_nd(deltas, indices)
    # Apply bounding box deltas
    # Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinates
    refined_rois = apply_box_deltas_graph(
        rois, deltas_specific * config.BBOX_STD_DEV)
    # Clip boxes to image window
    refined_rois = clip_boxes_graph(refined_rois, window)

    # TODO: Filter out boxes with zero area

    # Filter out background boxes
    keep = tf.where(class_ids > 0)[:, 0]
    # Filter out low confidence boxes
    if config.DETECTION_MIN_CONFIDENCE:
        conf_keep = tf.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[:, 0]
        keep = tf.sets.set_intersection(tf.expand_dims(keep, 0),
                                        tf.expand_dims(conf_keep, 0))
        keep = tf.sparse_tensor_to_dense(keep)[0]

    # Apply per-class NMS
    # 1. Prepare variables
    pre_nms_class_ids = tf.gather(class_ids, keep)
    pre_nms_scores = tf.gather(class_scores, keep)
    pre_nms_rois = tf.gather(refined_rois,   keep)
    unique_pre_nms_class_ids = tf.unique(pre_nms_class_ids)[0]

    def nms_keep_map(class_id):
        """Apply Non-Maximum Suppression on ROIs of the given class."""
        # Indices of ROIs of the given class
        ixs = tf.where(tf.equal(pre_nms_class_ids, class_id))[:, 0]
        # Apply NMS
        class_keep = tf.image.non_max_suppression(
                tf.gather(pre_nms_rois, ixs),
                tf.gather(pre_nms_scores, ixs),
                max_output_size=config.DETECTION_MAX_INSTANCES,
                iou_threshold=config.DETECTION_NMS_THRESHOLD)
        # Map indicies
        class_keep = tf.gather(keep, tf.gather(ixs, class_keep))
        # Pad with -1 so returned tensors have the same shape
        gap = config.DETECTION_MAX_INSTANCES - tf.shape(class_keep)[0]
        class_keep = tf.pad(class_keep, [(0, gap)],
                            mode='CONSTANT', constant_values=-1)
        # Set shape so map_fn() can infer result shape
        class_keep.set_shape([config.DETECTION_MAX_INSTANCES])
        return class_keep

    # 2. Map over class IDs
    nms_keep = tf.map_fn(nms_keep_map, unique_pre_nms_class_ids,
                         dtype=tf.int64)
    # 3. Merge results into one list, and remove -1 padding
    nms_keep = tf.reshape(nms_keep, [-1])
    nms_keep = tf.gather(nms_keep, tf.where(nms_keep > -1)[:, 0])
    # 4. Compute intersection between keep and nms_keep
    keep = tf.sets.set_intersection(tf.expand_dims(keep, 0),
                                    tf.expand_dims(nms_keep, 0))
    keep = tf.sparse_tensor_to_dense(keep)[0]
    # Keep top detections
    roi_count = config.DETECTION_MAX_INSTANCES
    class_scores_keep = tf.gather(class_scores, keep)
    num_keep = tf.minimum(tf.shape(class_scores_keep)[0], roi_count)
    top_ids = tf.nn.top_k(class_scores_keep, k=num_keep, sorted=True)[1]
    keep = tf.gather(keep, top_ids)

    # Arrange output as [N, (y1, x1, y2, x2, class_id, score)]
    # Coordinates are normalized.
    detections = tf.concat([
        tf.gather(refined_rois, keep),
        tf.to_float(tf.gather(class_ids, keep))[..., tf.newaxis],
        tf.gather(class_scores, keep)[..., tf.newaxis]
        ], axis=1)

    # Pad with zeros if detections < DETECTION_MAX_INSTANCES
    gap = config.DETECTION_MAX_INSTANCES - tf.shape(detections)[0]
    detections = tf.pad(detections, [(0, gap), (0, 0)], "CONSTANT")
    return detections


class DetectionLayer(KE.Layer):
    """Takes classified proposal boxes and their bounding box deltas and
    returns the final detection boxes.

    Returns:
    [batch, num_detections, (y1, x1, y2, x2, class_id, class_score)] where
    coordinates are normalized.
    """

    def __init__(self, config=None, **kwargs):
        super(DetectionLayer, self).__init__(**kwargs)
        self.config = config

    def call(self, inputs):
        rois = inputs[0]
        mrcnn_class = inputs[1]
        mrcnn_bbox = inputs[2]
        image_meta = inputs[3]

        # Get windows of images in normalized coordinates. Windows are the area
        # in the image that excludes the padding.
        # Use the shape of the first image in the batch to normalize the window
        # because we know that all images get resized to the same size.
        m = parse_image_meta_graph(image_meta)
        image_shape = m['image_shape'][0]
        window = norm_boxes_graph(m['window'], image_shape[:2])
Ubuntu's avatar
Ubuntu committed
804

nikhil_rayaprolu's avatar
nikhil_rayaprolu committed
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
        # Run detection refinement graph on each item in the batch
        detections_batch = utils.batch_slice(
            [rois, mrcnn_class, mrcnn_bbox, window],
            lambda x, y, w, z: refine_detections_graph(x, y, w, z, self.config),
            self.config.IMAGES_PER_GPU)

        # Reshape output
        # [batch, num_detections, (y1, x1, y2, x2, class_score)] in
        # normalized coordinates
        return tf.reshape(
            detections_batch,
            [self.config.BATCH_SIZE, self.config.DETECTION_MAX_INSTANCES, 6])

    def compute_output_shape(self, input_shape):
        return (None, self.config.DETECTION_MAX_INSTANCES, 6)


############################################################
#  Region Proposal Network (RPN)
############################################################

def rpn_graph(feature_map, anchors_per_location, anchor_stride):
    """Builds the computation graph of Region Proposal Network.

    feature_map: backbone features [batch, height, width, depth]
    anchors_per_location: number of anchors per pixel in the feature map
    anchor_stride: Controls the density of anchors. Typically 1 (anchors for
                   every pixel in the feature map), or 2 (every other pixel).

    Returns:
        rpn_logits: [batch, H, W, 2] Anchor classifier logits (before softmax)
        rpn_probs: [batch, H, W, 2] Anchor classifier probabilities.
        rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be
                  applied to anchors.
    """
    # TODO: check if stride of 2 causes alignment issues if the featuremap
    #       is not even.
    # Shared convolutional base of the RPN
    shared = KL.Conv2D(512, (3, 3), padding='same', activation='relu',
                       strides=anchor_stride,
                       name='rpn_conv_shared')(feature_map)

    # Anchor Score. [batch, height, width, anchors per location * 2].
    x = KL.Conv2D(2 * anchors_per_location, (1, 1), padding='valid',
                  activation='linear', name='rpn_class_raw')(shared)

    # Reshape to [batch, anchors, 2]
    rpn_class_logits = KL.Lambda(
        lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 2]))(x)

    # Softmax on last dimension of BG/FG.
    rpn_probs = KL.Activation(
        "softmax", name="rpn_class_xxx")(rpn_class_logits)

    # Bounding box refinement. [batch, H, W, anchors per location, depth]
    # where depth is [x, y, log(w), log(h)]
    x = KL.Conv2D(anchors_per_location * 4, (1, 1), padding="valid",
                  activation='linear', name='rpn_bbox_pred')(shared)

    # Reshape to [batch, anchors, 4]
    rpn_bbox = KL.Lambda(lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 4]))(x)

    return [rpn_class_logits, rpn_probs, rpn_bbox]


def build_rpn_model(anchor_stride, anchors_per_location, depth):
    """Builds a Keras model of the Region Proposal Network.
    It wraps the RPN graph so it can be used multiple times with shared
    weights.

    anchors_per_location: number of anchors per pixel in the feature map
    anchor_stride: Controls the density of anchors. Typically 1 (anchors for
                   every pixel in the feature map), or 2 (every other pixel).
    depth: Depth of the backbone feature map.

    Returns a Keras Model object. The model outputs, when called, are:
    rpn_logits: [batch, H, W, 2] Anchor classifier logits (before softmax)
    rpn_probs: [batch, W, W, 2] Anchor classifier probabilities.
    rpn_bbox: [batch, H, W, (dy, dx, log(dh), log(dw))] Deltas to be
                applied to anchors.
    """
    input_feature_map = KL.Input(shape=[None, None, depth],
                                 name="input_rpn_feature_map")
    outputs = rpn_graph(input_feature_map, anchors_per_location, anchor_stride)
    return KM.Model([input_feature_map], outputs, name="rpn_model")


############################################################
#  Feature Pyramid Network Heads
############################################################

def fpn_classifier_graph(rois, feature_maps, image_meta,
                         pool_size, num_classes, train_bn=True):
    """Builds the computation graph of the feature pyramid network classifier
    and regressor heads.

    rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized
          coordinates.
    feature_maps: List of feature maps from diffent layers of the pyramid,
                  [P2, P3, P4, P5]. Each has a different resolution.
    - image_meta: [batch, (meta data)] Image details. See compose_image_meta()
    pool_size: The width of the square feature map generated from ROI Pooling.
    num_classes: number of classes, which determines the depth of the results
    train_bn: Boolean. Train or freeze Batch Norm layres

    Returns:
        logits: [N, NUM_CLASSES] classifier logits (before softmax)
        probs: [N, NUM_CLASSES] classifier probabilities
        bbox_deltas: [N, (dy, dx, log(dh), log(dw))] Deltas to apply to
                     proposal boxes
    """
    # ROI Pooling
    # Shape: [batch, num_boxes, pool_height, pool_width, channels]
    x = PyramidROIAlign([pool_size, pool_size],
                        name="roi_align_classifier")([rois, image_meta] + feature_maps)
    # Two 1024 FC layers (implemented with Conv2D for consistency)
    x = KL.TimeDistributed(KL.Conv2D(1024, (pool_size, pool_size), padding="valid"),
                           name="mrcnn_class_conv1")(x)
    x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn1')(x, training=train_bn)
    x = KL.Activation('relu')(x)
    x = KL.TimeDistributed(KL.Conv2D(1024, (1, 1)),
                           name="mrcnn_class_conv2")(x)
    x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn2')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    shared = KL.Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2),
                       name="pool_squeeze")(x)

    # Classifier head
    mrcnn_class_logits = KL.TimeDistributed(KL.Dense(num_classes),
                                            name='mrcnn_class_logits')(shared)
    mrcnn_probs = KL.TimeDistributed(KL.Activation("softmax"),
                                     name="mrcnn_class")(mrcnn_class_logits)

    # BBox head
    # [batch, boxes, num_classes * (dy, dx, log(dh), log(dw))]
    x = KL.TimeDistributed(KL.Dense(num_classes * 4, activation='linear'),
                           name='mrcnn_bbox_fc')(shared)
    # Reshape to [batch, boxes, num_classes, (dy, dx, log(dh), log(dw))]
    s = K.int_shape(x)
    mrcnn_bbox = KL.Reshape((s[1], num_classes, 4), name="mrcnn_bbox")(x)

    return mrcnn_class_logits, mrcnn_probs, mrcnn_bbox


def build_fpn_mask_graph(rois, feature_maps, image_meta,
                         pool_size, num_classes, train_bn=True):
    """Builds the computation graph of the mask head of Feature Pyramid Network.

    rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized
          coordinates.
    feature_maps: List of feature maps from diffent layers of the pyramid,
                  [P2, P3, P4, P5]. Each has a different resolution.
    image_meta: [batch, (meta data)] Image details. See compose_image_meta()
    pool_size: The width of the square feature map generated from ROI Pooling.
    num_classes: number of classes, which determines the depth of the results
    train_bn: Boolean. Train or freeze Batch Norm layres

    Returns: Masks [batch, roi_count, height, width, num_classes]
    """
    # ROI Pooling
    # Shape: [batch, boxes, pool_height, pool_width, channels]
    x = PyramidROIAlign([pool_size, pool_size],
                        name="roi_align_mask")([rois, image_meta] + feature_maps)

    # Conv layers
    x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv1")(x)
    x = KL.TimeDistributed(BatchNorm(),
                           name='mrcnn_mask_bn1')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv2")(x)
    x = KL.TimeDistributed(BatchNorm(),
                           name='mrcnn_mask_bn2')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv3")(x)
    x = KL.TimeDistributed(BatchNorm(),
                           name='mrcnn_mask_bn3')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.TimeDistributed(KL.Conv2D(256, (3, 3), padding="same"),
                           name="mrcnn_mask_conv4")(x)
    x = KL.TimeDistributed(BatchNorm(),
                           name='mrcnn_mask_bn4')(x, training=train_bn)
    x = KL.Activation('relu')(x)

    x = KL.TimeDistributed(KL.Conv2DTranspose(256, (2, 2), strides=2, activation="relu"),
                           name="mrcnn_mask_deconv")(x)
    x = KL.TimeDistributed(KL.Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"),
                           name="mrcnn_mask")(x)
    return x


############################################################
#  Loss Functions
############################################################

def smooth_l1_loss(y_true, y_pred):
    """Implements Smooth-L1 loss.
    y_true and y_pred are typicallly: [N, 4], but could be any shape.
    """
    diff = K.abs(y_true - y_pred)
    less_than_one = K.cast(K.less(diff, 1.0), "float32")
    loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5)
    return loss


def rpn_class_loss_graph(rpn_match, rpn_class_logits):
    """RPN anchor classifier loss.

    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for FG/BG.
    """
    # Squeeze last dim to simplify
    rpn_match = tf.squeeze(rpn_match, -1)
    # Get anchor classes. Convert the -1/+1 match to 0/1 values.
    anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32)
    # Positive and Negative anchors contribute to the loss,
    # but neutral anchors (match value = 0) don't.
    indices = tf.where(K.not_equal(rpn_match, 0))
    # Pick rows that contribute to the loss and filter out the rest.
    rpn_class_logits = tf.gather_nd(rpn_class_logits, indices)
    anchor_class = tf.gather_nd(anchor_class, indices)
    # Crossentropy loss
    loss = K.sparse_categorical_crossentropy(target=anchor_class,
                                             output=rpn_class_logits,
                                             from_logits=True)
    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss


def rpn_bbox_loss_graph(config, target_bbox, rpn_match, rpn_bbox):
    """Return the RPN bounding box loss graph.

    config: the model config object.
    target_bbox: [batch, max positive anchors, (dy, dx, log(dh), log(dw))].
        Uses 0 padding to fill in unsed bbox deltas.
    rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive,
               -1=negative, 0=neutral anchor.
    rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))]
    """
    # Positive anchors contribute to the loss, but negative and
    # neutral anchors (match value of 0 or -1) don't.
    rpn_match = K.squeeze(rpn_match, -1)
    indices = tf.where(K.equal(rpn_match, 1))

    # Pick bbox deltas that contribute to the loss
    rpn_bbox = tf.gather_nd(rpn_bbox, indices)

    # Trim target bounding box deltas to the same length as rpn_bbox.
    batch_counts = K.sum(K.cast(K.equal(rpn_match, 1), tf.int32), axis=1)
    target_bbox = batch_pack_graph(target_bbox, batch_counts,
                                   config.IMAGES_PER_GPU)

    # TODO: use smooth_l1_loss() rather than reimplementing here
    #       to reduce code duplication
    diff = K.abs(target_bbox - rpn_bbox)
    less_than_one = K.cast(K.less(diff, 1.0), "float32")
    loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5)

    loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0))
    return loss


def mrcnn_class_loss_graph(target_class_ids, pred_class_logits,
                           active_class_ids):
    """Loss for the classifier head of Mask RCNN.

    target_class_ids: [batch, num_rois]. Integer class IDs. Uses zero
        padding to fill in the array.
    pred_class_logits: [batch, num_rois, num_classes]
    active_class_ids: [batch, num_classes]. Has a value of 1 for
        classes that are in the dataset of the image, and 0
        for classes that are not in the dataset.
    """
    target_class_ids = tf.cast(target_class_ids, 'int64')

    # Find predictions of classes that are not in the dataset.
    pred_class_ids = tf.argmax(pred_class_logits, axis=2)
    # TODO: Update this line to work with batch > 1. Right now it assumes all
    #       images in a batch have the same active_class_ids
    pred_active = tf.gather(active_class_ids[0], pred_class_ids)

    # Loss
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
        labels=target_class_ids, logits=pred_class_logits)

    # Erase losses of predictions of classes that are not in the active
    # classes of the image.
    loss = loss * pred_active

    # Computer loss mean. Use only predictions that contribute
    # to the loss to get a correct mean.
    loss = tf.reduce_sum(loss) / tf.reduce_sum(pred_active)
    return loss


def mrcnn_bbox_loss_graph(target_bbox, target_class_ids, pred_bbox):
    """Loss for Mask R-CNN bounding box refinement.

    target_bbox: [batch, num_rois, (dy, dx, log(dh), log(dw))]
    target_class_ids: [batch, num_rois]. Integer class IDs.
    pred_bbox: [batch, num_rois, num_classes, (dy, dx, log(dh), log(dw))]
    """
    # Reshape to merge batch and roi dimensions for simplicity.
    target_class_ids = K.reshape(target_class_ids, (-1,))
    target_bbox = K.reshape(target_bbox, (-1, 4))
    pred_bbox = K.reshape(pred_bbox, (-1, K.int_shape(pred_bbox)[2], 4))

    # Only positive ROIs contribute to the loss. And only
    # the right class_id of each ROI. Get their indicies.
    positive_roi_ix = tf.where(target_class_ids > 0)[:, 0]
    positive_roi_class_ids = tf.cast(
        tf.gather(target_class_ids, positive_roi_ix), tf.int64)
    indices = tf.stack([positive_roi_ix, positive_roi_class_ids], axis=1)

    # Gather the deltas (predicted and true) that contribute to loss
    target_bbox = tf.gather(target_bbox, positive_roi_ix)
    pred_bbox = tf.gather_nd(pred_bbox, indices)

    # Smooth-L1 Loss
    loss = K.switch(tf.size(target_bbox) > 0,
                    smooth_l1_loss(y_true=target_bbox, y_pred=pred_bbox),
                    tf.constant(0.0))
    loss = K.mean(loss)
    return loss


def mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks):
    """Mask binary cross-entropy loss for the masks head.

    target_masks: [batch, num_rois, height, width].
        A float32 tensor of values 0 or 1. Uses zero padding to fill array.
    target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded.
    pred_masks: [batch, proposals, height, width, num_classes] float32 tensor
                with values from 0 to 1.
    """
    # Reshape for simplicity. Merge first two dimensions into one.
    target_class_ids = K.reshape(target_class_ids, (-1,))
    mask_shape = tf.shape(target_masks)
    target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3]))
    pred_shape = tf.shape(pred_masks)
    pred_masks = K.reshape(pred_masks,
                           (-1, pred_shape[2], pred_shape[3], pred_shape[4]))
    # Permute predicted masks to [N, num_classes, height, width]
    pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2])

    # Only positive ROIs contribute to the loss. And only
    # the class specific mask of each ROI.
    positive_ix = tf.where(target_class_ids > 0)[:, 0]
    positive_class_ids = tf.cast(
        tf.gather(target_class_ids, positive_ix), tf.int64)
    indices = tf.stack([positive_ix, positive_class_ids], axis=1)

    # Gather the masks (predicted and true) that contribute to loss
    y_true = tf.gather(target_masks, positive_ix)
    y_pred = tf.gather_nd(pred_masks, indices)

    # Compute binary cross entropy. If no positive ROIs, then return 0.
    # shape: [batch, roi, num_classes]
    loss = K.switch(tf.size(y_true) > 0,
                    K.binary_crossentropy(target=y_true, output=y_pred),
                    tf.constant(0.0))
    loss = K.mean(loss)
    return loss


############################################################
#  Data Generator
############################################################

def load_image_gt(dataset, config, image_id, augment=False, augmentation=None,
                  use_mini_mask=False):
    """Load and return ground truth data for an image (image, mask, bounding boxes).

    augment: (Depricated. Use augmentation instead). If true, apply random
        image augmentation. Currently, only horizontal flipping is offered.
    augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation.
        For example, passing imgaug.augmenters.Fliplr(0.5) flips images
        right/left 50% of the time.
    use_mini_mask: If False, returns full-size masks that are the same height
        and width as the original image. These can be big, for example
        1024x1024x100 (for 100 instances). Mini masks are smaller, typically,
        224x224 and are generated by extracting the bounding box of the
        object and resizing it to MINI_MASK_SHAPE.

    Returns:
    image: [height, width, 3]
    shape: the original shape of the image before resizing and cropping.
    class_ids: [instance_count] Integer class IDs
    bbox: [instance_count, (y1, x1, y2, x2)]
    mask: [height, width, instance_count]. The height and width are those
        of the image unless use_mini_mask is True, in which case they are
        defined in MINI_MASK_SHAPE.
    """
    # Load image and mask
    image = dataset.load_image(image_id)
    mask, class_ids = dataset.load_mask(image_id)
    original_shape = image.shape
    image, window, scale, padding = utils.resize_image(
        image,
        min_dim=config.IMAGE_MIN_DIM,
        max_dim=config.IMAGE_MAX_DIM,
        mode=config.IMAGE_RESIZE_MODE)
    mask = utils.resize_mask(mask, scale, padding)

    # Random horizontal flips.
    # TODO: will be removed in a future update in favor of augmentation
    if augment:
        logging.warning("'augment' is depricated. Use 'augmentation' instead.")
        if random.randint(0, 1):
            image = np.fliplr(image)
            mask = np.fliplr(mask)

    # Augmentation
    # This requires the imgaug lib (https://github.com/aleju/imgaug)
    if augmentation:
        import imgaug

        # Augmentors that are safe to apply to masks
        # Some, such as Affine, have settings that make them unsafe, so always
        # test your augmentation on masks
        MASK_AUGMENTERS = ["Sequential", "SomeOf", "OneOf", "Sometimes",
                           "Fliplr", "Flipud", "CropAndPad",
                           "Affine", "PiecewiseAffine"]

        def hook(images, augmenter, parents, default):
            """Determines which augmenters to apply to masks."""
            return (augmenter.__class__.__name__ in MASK_AUGMENTERS)

        # Store shapes before augmentation to compare
        image_shape = image.shape
        mask_shape = mask.shape
        # Make augmenters deterministic to apply similarly to images and masks
        det = augmentation.to_deterministic()
        image = det.augment_image(image)
        # Change mask to np.uint8 because imgaug doesn't support np.bool
        mask = det.augment_image(mask.astype(np.uint8),
                                 hooks=imgaug.HooksImages(activator=hook))
        # Verify that shapes didn't change
        assert image.shape == image_shape, "Augmentation shouldn't change image size"
        assert mask.shape == mask_shape, "Augmentation shouldn't change mask size"
        # Change mask back to bool
        mask = mask.astype(np.bool)

    # Note that some boxes might be all zeros if the corresponding mask got cropped out.
    # and here is to filter them out
    _idx = np.sum(mask, axis=(0, 1)) > 0
    mask = mask[:, :, _idx]
    class_ids = class_ids[_idx]
    # Bounding boxes. Note that some boxes might be all zeros
    # if the corresponding mask got cropped out.
    # bbox: [num_instances, (y1, x1, y2, x2)]
    bbox = utils.extract_bboxes(mask)

    # Active classes
    # Different datasets have different classes, so track the
    # classes supported in the dataset of this image.
    active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32)
    source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]]
    active_class_ids[source_class_ids] = 1

    # Resize masks to smaller size to reduce memory usage
    if use_mini_mask:
        mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE)

    # Image meta data
    image_meta = compose_image_meta(image_id, original_shape, image.shape,
                                    window, scale, active_class_ids)

    return image, image_meta, class_ids, bbox, mask


def build_detection_targets(rpn_rois, gt_class_ids, gt_boxes, gt_masks, config):
    """Generate targets for training Stage 2 classifier and mask heads.
    This is not used in normal training. It's useful for debugging or to train
    the Mask RCNN heads without using the RPN head.

    Inputs:
    rpn_rois: [N, (y1, x1, y2, x2)] proposal boxes.
    gt_class_ids: [instance count] Integer class IDs
    gt_boxes: [instance count, (y1, x1, y2, x2)]
    gt_masks: [height, width, instance count] Grund truth masks. Can be full
              size or mini-masks.

    Returns:
    rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)]
    class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs.
    bboxes: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (y, x, log(h), log(w))]. Class-specific
            bbox refinements.
    masks: [TRAIN_ROIS_PER_IMAGE, height, width, NUM_CLASSES). Class specific masks cropped
           to bbox boundaries and resized to neural network output size.
    """
    assert rpn_rois.shape[0] > 0
    assert gt_class_ids.dtype == np.int32, "Expected int but got {}".format(
        gt_class_ids.dtype)
    assert gt_boxes.dtype == np.int32, "Expected int but got {}".format(
        gt_boxes.dtype)
    assert gt_masks.dtype == np.bool_, "Expected bool but got {}".format(
        gt_masks.dtype)

    # It's common to add GT Boxes to ROIs but we don't do that here because
    # according to XinLei Chen's paper, it doesn't help.

    # Trim empty padding in gt_boxes and gt_masks parts
    instance_ids = np.where(gt_class_ids > 0)[0]
    assert instance_ids.shape[0] > 0, "Image must contain instances."
    gt_class_ids = gt_class_ids[instance_ids]
    gt_boxes = gt_boxes[instance_ids]
    gt_masks = gt_masks[:, :, instance_ids]

    # Compute areas of ROIs and ground truth boxes.
    rpn_roi_area = (rpn_rois[:, 2] - rpn_rois[:, 0]) * \
        (rpn_rois[:, 3] - rpn_rois[:, 1])
    gt_box_area = (gt_boxes[:, 2] - gt_boxes[:, 0]) * \
        (gt_boxes[:, 3] - gt_boxes[:, 1])

    # Compute overlaps [rpn_rois, gt_boxes]
    overlaps = np.zeros((rpn_rois.shape[0], gt_boxes.shape[0]))
    for i in range(overlaps.shape[1]):
        gt = gt_boxes[i]
        overlaps[:, i] = utils.compute_iou(
            gt, rpn_rois, gt_box_area[i], rpn_roi_area)

    # Assign ROIs to GT boxes
    rpn_roi_iou_argmax = np.argmax(overlaps, axis=1)
    rpn_roi_iou_max = overlaps[np.arange(
        overlaps.shape[0]), rpn_roi_iou_argmax]
    # GT box assigned to each ROI
    rpn_roi_gt_boxes = gt_boxes[rpn_roi_iou_argmax]
    rpn_roi_gt_class_ids = gt_class_ids[rpn_roi_iou_argmax]

    # Positive ROIs are those with >= 0.5 IoU with a GT box.
    fg_ids = np.where(rpn_roi_iou_max > 0.5)[0]

    # Negative ROIs are those with max IoU 0.1-0.5 (hard example mining)
    # TODO: To hard example mine or not to hard example mine, that's the question
#     bg_ids = np.where((rpn_roi_iou_max >= 0.1) & (rpn_roi_iou_max < 0.5))[0]
    bg_ids = np.where(rpn_roi_iou_max < 0.5)[0]

    # Subsample ROIs. Aim for 33% foreground.
    # FG
    fg_roi_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO)
    if fg_ids.shape[0] > fg_roi_count:
        keep_fg_ids = np.random.choice(fg_ids, fg_roi_count, replace=False)
    else:
        keep_fg_ids = fg_ids
    # BG
    remaining = config.TRAIN_ROIS_PER_IMAGE - keep_fg_ids.shape[0]
    if bg_ids.shape[0] > remaining:
        keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False)
    else:
        keep_bg_ids = bg_ids
    # Combine indicies of ROIs to keep
    keep = np.concatenate([keep_fg_ids, keep_bg_ids])
    # Need more?
    remaining = config.TRAIN_ROIS_PER_IMAGE - keep.shape[0]
    if remaining > 0:
        # Looks like we don't have enough samples to maintain the desired
        # balance. Reduce requirements and fill in the rest. This is
        # likely different from the Mask RCNN paper.

        # There is a small chance we have neither fg nor bg samples.
        if keep.shape[0] == 0:
            # Pick bg regions with easier IoU threshold
            bg_ids = np.where(rpn_roi_iou_max < 0.5)[0]
            assert bg_ids.shape[0] >= remaining
            keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False)
            assert keep_bg_ids.shape[0] == remaining
            keep = np.concatenate([keep, keep_bg_ids])
        else:
            # Fill the rest with repeated bg rois.
            keep_extra_ids = np.random.choice(
                keep_bg_ids, remaining, replace=True)
            keep = np.concatenate([keep, keep_extra_ids])
    assert keep.shape[0] == config.TRAIN_ROIS_PER_IMAGE, \
        "keep doesn't match ROI batch size {}, {}".format(
            keep.shape[0], config.TRAIN_ROIS_PER_IMAGE)

    # Reset the gt boxes assigned to BG ROIs.
    rpn_roi_gt_boxes[keep_bg_ids, :] = 0
    rpn_roi_gt_class_ids[keep_bg_ids] = 0

    # For each kept ROI, assign a class_id, and for FG ROIs also add bbox refinement.
    rois = rpn_rois[keep]
    roi_gt_boxes = rpn_roi_gt_boxes[keep]
    roi_gt_class_ids = rpn_roi_gt_class_ids[keep]
    roi_gt_assignment = rpn_roi_iou_argmax[keep]

    # Class-aware bbox deltas. [y, x, log(h), log(w)]
    bboxes = np.zeros((config.TRAIN_ROIS_PER_IMAGE,
                       config.NUM_CLASSES, 4), dtype=np.float32)
    pos_ids = np.where(roi_gt_class_ids > 0)[0]
    bboxes[pos_ids, roi_gt_class_ids[pos_ids]] = utils.box_refinement(
        rois[pos_ids], roi_gt_boxes[pos_ids, :4])
    # Normalize bbox refinements
    bboxes /= config.BBOX_STD_DEV

    # Generate class-specific target masks
    masks = np.zeros((config.TRAIN_ROIS_PER_IMAGE, config.MASK_SHAPE[0], config.MASK_SHAPE[1], config.NUM_CLASSES),
                     dtype=np.float32)
    for i in pos_ids:
        class_id = roi_gt_class_ids[i]
        assert class_id > 0, "class id must be greater than 0"
        gt_id = roi_gt_assignment[i]
        class_mask = gt_masks[:, :, gt_id]

        if config.USE_MINI_MASK:
            # Create a mask placeholder, the size of the image
            placeholder = np.zeros(config.IMAGE_SHAPE[:2], dtype=bool)
            # GT box
            gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[gt_id]
            gt_w = gt_x2 - gt_x1
            gt_h = gt_y2 - gt_y1
            # Resize mini mask to size of GT box
            placeholder[gt_y1:gt_y2, gt_x1:gt_x2] = \
                np.round(skimage.transform.resize(
                    class_mask, (gt_h, gt_w), order=1, mode="constant")).astype(bool)
            # Place the mini batch in the placeholder
            class_mask = placeholder

        # Pick part of the mask and resize it
        y1, x1, y2, x2 = rois[i].astype(np.int32)
        m = class_mask[y1:y2, x1:x2]
        mask = skimage.transform.resize(m, config.MASK_SHAPE, order=1, mode="constant")
        masks[i, :, :, class_id] = mask

    return rois, roi_gt_class_ids, bboxes, masks


def build_rpn_targets(image_shape, anchors, gt_class_ids, gt_boxes, config):
    """Given the anchors and GT boxes, compute overlaps and identify positive
    anchors and deltas to refine them to match their corresponding GT boxes.

    anchors: [num_anchors, (y1, x1, y2, x2)]
    gt_class_ids: [num_gt_boxes] Integer class IDs.
    gt_boxes: [num_gt_boxes, (y1, x1, y2, x2)]

    Returns:
    rpn_match: [N] (int32) matches between anchors and GT boxes.
               1 = positive anchor, -1 = negative anchor, 0 = neutral
    rpn_bbox: [N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas.
    """
    # RPN Match: 1 = positive anchor, -1 = negative anchor, 0 = neutral
    rpn_match = np.zeros([anchors.shape[0]], dtype=np.int32)
    # RPN bounding boxes: [max anchors per image, (dy, dx, log(dh), log(dw))]
    rpn_bbox = np.zeros((config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4))

    # Handle COCO crowds
    # A crowd box in COCO is a bounding box around several instances. Exclude
    # them from training. A crowd box is given a negative class ID.
    crowd_ix = np.where(gt_class_ids < 0)[0]
    if crowd_ix.shape[0] > 0:
        # Filter out crowds from ground truth class IDs and boxes
        non_crowd_ix = np.where(gt_class_ids > 0)[0]
        crowd_boxes = gt_boxes[crowd_ix]
        gt_class_ids = gt_class_ids[non_crowd_ix]
        gt_boxes = gt_boxes[non_crowd_ix]
        # Compute overlaps with crowd boxes [anchors, crowds]
        crowd_overlaps = utils.compute_overlaps(anchors, crowd_boxes)
        crowd_iou_max = np.amax(crowd_overlaps, axis=1)
        no_crowd_bool = (crowd_iou_max < 0.001)
    else:
        # All anchors don't intersect a crowd
        no_crowd_bool = np.ones([anchors.shape[0]], dtype=bool)

    # Compute overlaps [num_anchors, num_gt_boxes]
    overlaps = utils.compute_overlaps(anchors, gt_boxes)

    # Match anchors to GT Boxes
    # If an anchor overlaps a GT box with IoU >= 0.7 then it's positive.
    # If an anchor overlaps a GT box with IoU < 0.3 then it's negative.
    # Neutral anchors are those that don't match the conditions above,
    # and they don't influence the loss function.
    # However, don't keep any GT box unmatched (rare, but happens). Instead,
    # match it to the closest anchor (even if its max IoU is < 0.3).
    #
    # 1. Set negative anchors first. They get overwritten below if a GT box is
    # matched to them. Skip boxes in crowd areas.
    anchor_iou_argmax = np.argmax(overlaps, axis=1)
    anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax]
    rpn_match[(anchor_iou_max < 0.3) & (no_crowd_bool)] = -1
    # 2. Set an anchor for each GT box (regardless of IoU value).
    # TODO: If multiple anchors have the same IoU match all of them
    gt_iou_argmax = np.argmax(overlaps, axis=0)
    rpn_match[gt_iou_argmax] = 1
    # 3. Set anchors with high overlap as positive.
    rpn_match[anchor_iou_max >= 0.7] = 1

    # Subsample to balance positive and negative anchors
    # Don't let positives be more than half the anchors
    ids = np.where(rpn_match == 1)[0]
    extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2)
    if extra > 0:
        # Reset the extra ones to neutral
        ids = np.random.choice(ids, extra, replace=False)
        rpn_match[ids] = 0
    # Same for negative proposals
    ids = np.where(rpn_match == -1)[0]
    extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE -
                        np.sum(rpn_match == 1))
    if extra > 0:
        # Rest the extra ones to neutral
        ids = np.random.choice(ids, extra, replace=False)
        rpn_match[ids] = 0

    # For positive anchors, compute shift and scale needed to transform them
    # to match the corresponding GT boxes.
    ids = np.where(rpn_match == 1)[0]
    ix = 0  # index into rpn_bbox
    # TODO: use box_refinement() rather than duplicating the code here
    for i, a in zip(ids, anchors[ids]):
        # Closest gt box (it might have IoU < 0.7)
        gt = gt_boxes[anchor_iou_argmax[i]]

        # Convert coordinates to center plus width/height.
        # GT Box
        gt_h = gt[2] - gt[0]
        gt_w = gt[3] - gt[1]
        gt_center_y = gt[0] + 0.5 * gt_h
        gt_center_x = gt[1] + 0.5 * gt_w
        # Anchor
        a_h = a[2] - a[0]
        a_w = a[3] - a[1]
        a_center_y = a[0] + 0.5 * a_h
        a_center_x = a[1] + 0.5 * a_w

        # Compute the bbox refinement that the RPN should predict.
        rpn_bbox[ix] = [
            (gt_center_y - a_center_y) / a_h,
            (gt_center_x - a_center_x) / a_w,
            np.log(gt_h / a_h),
            np.log(gt_w / a_w),
        ]
        # Normalize
        rpn_bbox[ix] /= config.RPN_BBOX_STD_DEV
        ix += 1

    return rpn_match, rpn_bbox


def generate_random_rois(image_shape, count, gt_class_ids, gt_boxes):
    """Generates ROI proposals similar to what a region proposal network
    would generate.

    image_shape: [Height, Width, Depth]
    count: Number of ROIs to generate
    gt_class_ids: [N] Integer ground truth class IDs
    gt_boxes: [N, (y1, x1, y2, x2)] Ground truth boxes in pixels.

    Returns: [count, (y1, x1, y2, x2)] ROI boxes in pixels.
    """
    # placeholder
    rois = np.zeros((count, 4), dtype=np.int32)

    # Generate random ROIs around GT boxes (90% of count)
    rois_per_box = int(0.9 * count / gt_boxes.shape[0])
    for i in range(gt_boxes.shape[0]):
        gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[i]
        h = gt_y2 - gt_y1
        w = gt_x2 - gt_x1
        # random boundaries
        r_y1 = max(gt_y1 - h, 0)
        r_y2 = min(gt_y2 + h, image_shape[0])
        r_x1 = max(gt_x1 - w, 0)
        r_x2 = min(gt_x2 + w, image_shape[1])

        # To avoid generating boxes with zero area, we generate double what
        # we need and filter out the extra. If we get fewer valid boxes
        # than we need, we loop and try again.
        while True:
            y1y2 = np.random.randint(r_y1, r_y2, (rois_per_box * 2, 2))
            x1x2 = np.random.randint(r_x1, r_x2, (rois_per_box * 2, 2))
            # Filter out zero area boxes
            threshold = 1
            y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >=
                        threshold][:rois_per_box]
            x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >=
                        threshold][:rois_per_box]
            if y1y2.shape[0] == rois_per_box and x1x2.shape[0] == rois_per_box:
                break

        # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape
        # into x1, y1, x2, y2 order
        x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1)
        y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1)
        box_rois = np.hstack([y1, x1, y2, x2])
        rois[rois_per_box * i:rois_per_box * (i + 1)] = box_rois

    # Generate random ROIs anywhere in the image (10% of count)
    remaining_count = count - (rois_per_box * gt_boxes.shape[0])
    # To avoid generating boxes with zero area, we generate double what
    # we need and filter out the extra. If we get fewer valid boxes
    # than we need, we loop and try again.
    while True:
        y1y2 = np.random.randint(0, image_shape[0], (remaining_count * 2, 2))
        x1x2 = np.random.randint(0, image_shape[1], (remaining_count * 2, 2))
        # Filter out zero area boxes
        threshold = 1
        y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >=
                    threshold][:remaining_count]
        x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >=
                    threshold][:remaining_count]
        if y1y2.shape[0] == remaining_count and x1x2.shape[0] == remaining_count:
            break

    # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape
    # into x1, y1, x2, y2 order
    x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1)
    y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1)
    global_rois = np.hstack([y1, x1, y2, x2])
    rois[-remaining_count:] = global_rois
    return rois


def data_generator(dataset, config, shuffle=True, augment=False, augmentation=None,
                   random_rois=0, batch_size=1, detection_targets=False):
    """A generator that returns images and corresponding target class ids,
    bounding box deltas, and masks.

    dataset: The Dataset object to pick data from
    config: The model config object
    shuffle: If True, shuffles the samples before every epoch
    augment: (Depricated. Use augmentation instead). If true, apply random
        image augmentation. Currently, only horizontal flipping is offered.
    augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation.
        For example, passing imgaug.augmenters.Fliplr(0.5) flips images
        right/left 50% of the time.
    random_rois: If > 0 then generate proposals to be used to train the
                 network classifier and mask heads. Useful if training
                 the Mask RCNN part without the RPN.
    batch_size: How many images to return in each call
    detection_targets: If True, generate detection targets (class IDs, bbox
        deltas, and masks). Typically for debugging or visualizations because
        in trainig detection targets are generated by DetectionTargetLayer.

    Returns a Python generator. Upon calling next() on it, the
    generator returns two lists, inputs and outputs. The containtes
    of the lists differs depending on the received arguments:
    inputs list:
    - images: [batch, H, W, C]
    - image_meta: [batch, (meta data)] Image details. See compose_image_meta()
    - rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral)
    - rpn_bbox: [batch, N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas.
    - gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs
    - gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)]
    - gt_masks: [batch, height, width, MAX_GT_INSTANCES]. The height and width
                are those of the image unless use_mini_mask is True, in which
                case they are defined in MINI_MASK_SHAPE.

    outputs list: Usually empty in regular training. But if detection_targets
        is True then the outputs list contains target class_ids, bbox deltas,
        and masks.
    """
    b = 0  # batch item index
    image_index = -1
    image_ids = np.copy(dataset.image_ids)
    error_count = 0

    # Anchors
    # [anchor_count, (y1, x1, y2, x2)]
    backbone_shapes = compute_backbone_shapes(config, config.IMAGE_SHAPE)
    anchors = utils.generate_pyramid_anchors(config.RPN_ANCHOR_SCALES,
                                             config.RPN_ANCHOR_RATIOS,
                                             backbone_shapes,
                                             config.BACKBONE_STRIDES,
                                             config.RPN_ANCHOR_STRIDE)

    # Keras requires a generator to run indefinately.
    while True:
        try:
            # Increment index to pick next image. Shuffle if at the start of an epoch.
            image_index = (image_index + 1) % len(image_ids)
            if shuffle and image_index == 0:
                np.random.shuffle(image_ids)

            # Get GT bounding boxes and masks for image.
            image_id = image_ids[image_index]
            image, image_meta, gt_class_ids, gt_boxes, gt_masks = \
                load_image_gt(dataset, config, image_id, augment=augment,
                              augmentation=augmentation,
                              use_mini_mask=config.USE_MINI_MASK)

            # Skip images that have no instances. This can happen in cases
            # where we train on a subset of classes and the image doesn't
            # have any of the classes we care about.
            if not np.any(gt_class_ids > 0):
                continue

            # RPN Targets
            rpn_match, rpn_bbox = build_rpn_targets(image.shape, anchors,
                                                    gt_class_ids, gt_boxes, config)

            # Mask R-CNN Targets
            if random_rois:
                rpn_rois = generate_random_rois(
                    image.shape, random_rois, gt_class_ids, gt_boxes)
                if detection_targets:
                    rois, mrcnn_class_ids, mrcnn_bbox, mrcnn_mask =\
                        build_detection_targets(
                            rpn_rois, gt_class_ids, gt_boxes, gt_masks, config)

            # Init batch arrays
            if b == 0:
                batch_image_meta = np.zeros(
                    (batch_size,) + image_meta.shape, dtype=image_meta.dtype)
                batch_rpn_match = np.zeros(
                    [batch_size, anchors.shape[0], 1], dtype=rpn_match.dtype)
                batch_rpn_bbox = np.zeros(
                    [batch_size, config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4], dtype=rpn_bbox.dtype)
                batch_images = np.zeros(
                    (batch_size,) + image.shape, dtype=np.float32)
                batch_gt_class_ids = np.zeros(
                    (batch_size, config.MAX_GT_INSTANCES), dtype=np.int32)
                batch_gt_boxes = np.zeros(
                    (batch_size, config.MAX_GT_INSTANCES, 4), dtype=np.int32)
                batch_gt_masks = np.zeros(
                    (batch_size, gt_masks.shape[1], gt_masks.shape[1],
                     config.MAX_GT_INSTANCES), dtype=gt_masks.dtype)
                if random_rois:
                    batch_rpn_rois = np.zeros(
                        (batch_size, rpn_rois.shape[0], 4), dtype=rpn_rois.dtype)
                    if detection_targets:
                        batch_rois = np.zeros(
                            (batch_size,) + rois.shape, dtype=rois.dtype)
                        batch_mrcnn_class_ids = np.zeros(
                            (batch_size,) + mrcnn_class_ids.shape, dtype=mrcnn_class_ids.dtype)
                        batch_mrcnn_bbox = np.zeros(
                            (batch_size,) + mrcnn_bbox.shape, dtype=mrcnn_bbox.dtype)
                        batch_mrcnn_mask = np.zeros(
                            (batch_size,) + mrcnn_mask.shape, dtype=mrcnn_mask.dtype)

            # If more instances than fits in the array, sub-sample from them.
            if gt_boxes.shape[0] > config.MAX_GT_INSTANCES:
                ids = np.random.choice(
                    np.arange(gt_boxes.shape[0]), config.MAX_GT_INSTANCES, replace=False)
                gt_class_ids = gt_class_ids[ids]
                gt_boxes = gt_boxes[ids]
                gt_masks = gt_masks[:, :, ids]

            # Add to batch
            batch_image_meta[b] = image_meta
            batch_rpn_match[b] = rpn_match[:, np.newaxis]
            batch_rpn_bbox[b] = rpn_bbox
            batch_images[b] = mold_image(image.astype(np.float32), config)
            batch_gt_class_ids[b, :gt_class_ids.shape[0]] = gt_class_ids
            batch_gt_boxes[b, :gt_boxes.shape[0]] = gt_boxes
            batch_gt_masks[b, :, :, :gt_masks.shape[-1]] = gt_masks
            if random_rois:
                batch_rpn_rois[b] = rpn_rois
                if detection_targets:
                    batch_rois[b] = rois
                    batch_mrcnn_class_ids[b] = mrcnn_class_ids
                    batch_mrcnn_bbox[b] = mrcnn_bbox
                    batch_mrcnn_mask[b] = mrcnn_mask
            b += 1

            # Batch full?
            if b >= batch_size:
                inputs = [batch_images, batch_image_meta, batch_rpn_match, batch_rpn_bbox,
                          batch_gt_class_ids, batch_gt_boxes, batch_gt_masks]
                outputs = []

                if random_rois:
                    inputs.extend([batch_rpn_rois])
                    if detection_targets:
                        inputs.extend([batch_rois])
                        # Keras requires that output and targets have the same number of dimensions
                        batch_mrcnn_class_ids = np.expand_dims(
                            batch_mrcnn_class_ids, -1)
                        outputs.extend(
                            [batch_mrcnn_class_ids, batch_mrcnn_bbox, batch_mrcnn_mask])

                yield inputs, outputs

                # start a new batch
                b = 0
        except (GeneratorExit, KeyboardInterrupt):
            raise
        except:
            # Log it and skip the image
            logging.exception("Error processing image {}".format(
                dataset.image_info[image_id]))
            error_count += 1
            if error_count > 5:
                raise


############################################################
#  MaskRCNN Class
############################################################

class MaskRCNN():
    """Encapsulates the Mask RCNN model functionality.

    The actual Keras model is in the keras_model property.
    """

    def __init__(self, mode, config, model_dir):
        """
        mode: Either "training" or "inference"
        config: A Sub-class of the Config class
        model_dir: Directory to save training logs and trained weights
        """
        assert mode in ['training', 'inference']
        self.mode = mode
        self.config = config
        self.model_dir = model_dir
        self.set_log_dir()
        self.keras_model = self.build(mode=mode, config=config)

    def build(self, mode, config):
        """Build Mask R-CNN architecture.
            input_shape: The shape of the input image.
            mode: Either "training" or "inference". The inputs and
                outputs of the model differ accordingly.
        """
        assert mode in ['training', 'inference']

        # Image size must be dividable by 2 multiple times
        h, w = config.IMAGE_SHAPE[:2]
        if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6):
            raise Exception("Image size must be dividable by 2 at least 6 times "
                            "to avoid fractions when downscaling and upscaling."
                            "For example, use 256, 320, 384, 448, 512, ... etc. ")

        # Inputs
        input_image = KL.Input(
            shape=[None, None, 3], name="input_image")
        input_image_meta = KL.Input(shape=[config.IMAGE_META_SIZE],
                                    name="input_image_meta")
        if mode == "training":
            # RPN GT
            input_rpn_match = KL.Input(
                shape=[None, 1], name="input_rpn_match", dtype=tf.int32)
            input_rpn_bbox = KL.Input(
                shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32)

            # Detection GT (class IDs, bounding boxes, and masks)
            # 1. GT Class IDs (zero padded)
            input_gt_class_ids = KL.Input(
                shape=[None], name="input_gt_class_ids", dtype=tf.int32)
            # 2. GT Boxes in pixels (zero padded)
            # [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in image coordinates
            input_gt_boxes = KL.Input(
                shape=[None, 4], name="input_gt_boxes", dtype=tf.float32)
            # Normalize coordinates
            gt_boxes = KL.Lambda(lambda x: norm_boxes_graph(
                x, K.shape(input_image)[1:3]))(input_gt_boxes)
            # 3. GT Masks (zero padded)
            # [batch, height, width, MAX_GT_INSTANCES]
            if config.USE_MINI_MASK:
                input_gt_masks = KL.Input(
                    shape=[config.MINI_MASK_SHAPE[0],
                           config.MINI_MASK_SHAPE[1], None],
                    name="input_gt_masks", dtype=bool)
            else:
                input_gt_masks = KL.Input(
                    shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None],
                    name="input_gt_masks", dtype=bool)
        elif mode == "inference":
            # Anchors in normalized coordinates
            input_anchors = KL.Input(shape=[None, 4], name="input_anchors")

        # Build the shared convolutional layers.
        # Bottom-up Layers
        # Returns a list of the last layers of each stage, 5 in total.
        # Don't create the thead (stage 5), so we pick the 4th item in the list.
        _, C2, C3, C4, C5 = resnet_graph(input_image, config.BACKBONE,
                                         stage5=True, train_bn=config.TRAIN_BN)
        # Top-down Layers
        # TODO: add assert to varify feature map sizes match what's in config
        P5 = KL.Conv2D(256, (1, 1), name='fpn_c5p5')(C5)
        P4 = KL.Add(name="fpn_p4add")([
            KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
            KL.Conv2D(256, (1, 1), name='fpn_c4p4')(C4)])
        P3 = KL.Add(name="fpn_p3add")([
            KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
            KL.Conv2D(256, (1, 1), name='fpn_c3p3')(C3)])
        P2 = KL.Add(name="fpn_p2add")([
            KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),
            KL.Conv2D(256, (1, 1), name='fpn_c2p2')(C2)])
        # Attach 3x3 conv to all P layers to get the final feature maps.
        P2 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p2")(P2)
        P3 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p3")(P3)
        P4 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p4")(P4)
        P5 = KL.Conv2D(256, (3, 3), padding="SAME", name="fpn_p5")(P5)
        # P6 is used for the 5th anchor scale in RPN. Generated by
        # subsampling from P5 with stride of 2.
        P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5)

        # Note that P6 is used in RPN, but not in the classifier heads.
        rpn_feature_maps = [P2, P3, P4, P5, P6]
        mrcnn_feature_maps = [P2, P3, P4, P5]

        # Anchors
        if mode == "training":
            anchors = self.get_anchors(config.IMAGE_SHAPE)
            # Duplicate across the batch dimension because Keras requires it
            # TODO: can this be optimized to avoid duplicating the anchors?
            anchors = np.broadcast_to(anchors, (config.BATCH_SIZE,) + anchors.shape)
            # A hack to get around Keras's bad support for constants
            anchors = KL.Lambda(lambda x: tf.constant(anchors), name="anchors")(input_image)
        else:
            anchors = input_anchors

        # RPN Model
        rpn = build_rpn_model(config.RPN_ANCHOR_STRIDE,
                              len(config.RPN_ANCHOR_RATIOS), 256)
        # Loop through pyramid layers
        layer_outputs = []  # list of lists
        for p in rpn_feature_maps:
            layer_outputs.append(rpn([p]))
        # Concatenate layer outputs
        # Convert from list of lists of level outputs to list of lists
        # of outputs across levels.
        # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]]
        output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"]
        outputs = list(zip(*layer_outputs))
        outputs = [KL.Concatenate(axis=1, name=n)(list(o))
                   for o, n in zip(outputs, output_names)]

        rpn_class_logits, rpn_class, rpn_bbox = outputs

        # Generate proposals
        # Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates
        # and zero padded.
        proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"\
            else config.POST_NMS_ROIS_INFERENCE
        rpn_rois = ProposalLayer(
            proposal_count=proposal_count,
            nms_threshold=config.RPN_NMS_THRESHOLD,
            name="ROI",
            config=config)([rpn_class, rpn_bbox, anchors])

        if mode == "training":
            # Class ID mask to mark class IDs supported by the dataset the image
            # came from.
            active_class_ids = KL.Lambda(
                lambda x: parse_image_meta_graph(x)["active_class_ids"]
                )(input_image_meta)

            if not config.USE_RPN_ROIS:
                # Ignore predicted ROIs and use ROIs provided as an input.
                input_rois = KL.Input(shape=[config.POST_NMS_ROIS_TRAINING, 4],
                                      name="input_roi", dtype=np.int32)
                # Normalize coordinates
                target_rois = KL.Lambda(lambda x: norm_boxes_graph(
                    x, K.shape(input_image)[1:3]))(input_rois)
            else:
                target_rois = rpn_rois

            # Generate detection targets
            # Subsamples proposals and generates target outputs for training
            # Note that proposal class IDs, gt_boxes, and gt_masks are zero
            # padded. Equally, returned rois and targets are zero padded.
            rois, target_class_ids, target_bbox, target_mask =\
                DetectionTargetLayer(config, name="proposal_targets")([
                    target_rois, input_gt_class_ids, gt_boxes, input_gt_masks])

            # Network Heads
            # TODO: verify that this handles zero padded ROIs
            mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\
                fpn_classifier_graph(rois, mrcnn_feature_maps, input_image_meta,
                                     config.POOL_SIZE, config.NUM_CLASSES,
                                     train_bn=config.TRAIN_BN)

            mrcnn_mask = build_fpn_mask_graph(rois, mrcnn_feature_maps,
                                              input_image_meta,
                                              config.MASK_POOL_SIZE,
                                              config.NUM_CLASSES,
                                              train_bn=config.TRAIN_BN)

            # TODO: clean up (use tf.identify if necessary)
            output_rois = KL.Lambda(lambda x: x * 1, name="output_rois")(rois)

            # Losses
            rpn_class_loss = KL.Lambda(lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss")(
                [input_rpn_match, rpn_class_logits])
            rpn_bbox_loss = KL.Lambda(lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")(
                [input_rpn_bbox, input_rpn_match, rpn_bbox])
            class_loss = KL.Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")(
                [target_class_ids, mrcnn_class_logits, active_class_ids])
            bbox_loss = KL.Lambda(lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")(
                [target_bbox, target_class_ids, mrcnn_bbox])
            mask_loss = KL.Lambda(lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")(
                [target_mask, target_class_ids, mrcnn_mask])

            # Model
            inputs = [input_image, input_image_meta,
                      input_rpn_match, input_rpn_bbox, input_gt_class_ids, input_gt_boxes, input_gt_masks]
            if not config.USE_RPN_ROIS:
                inputs.append(input_rois)
            outputs = [rpn_class_logits, rpn_class, rpn_bbox,
                       mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask,
                       rpn_rois, output_rois,
                       rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss]
            model = KM.Model(inputs, outputs, name='mask_rcnn')
        else:
            # Network Heads
            # Proposal classifier and BBox regressor heads
            mrcnn_class_logits, mrcnn_class, mrcnn_bbox =\
                fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, input_image_meta,
                                     config.POOL_SIZE, config.NUM_CLASSES,
                                     train_bn=config.TRAIN_BN)

            # Detections
Ubuntu's avatar
Ubuntu committed
2017
            # output is [batch, num_detections, (y1, x1, y2, x2, class_id, score)] in
nikhil_rayaprolu's avatar
nikhil_rayaprolu committed
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
            # normalized coordinates
            detections = DetectionLayer(config, name="mrcnn_detection")(
                [rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta])

            # Create masks for detections
            detection_boxes = KL.Lambda(lambda x: x[..., :4])(detections)
            mrcnn_mask = build_fpn_mask_graph(detection_boxes, mrcnn_feature_maps,
                                              input_image_meta,
                                              config.MASK_POOL_SIZE,
                                              config.NUM_CLASSES,
                                              train_bn=config.TRAIN_BN)

            model = KM.Model([input_image, input_image_meta, input_anchors],
                             [detections, mrcnn_class, mrcnn_bbox,
                                 mrcnn_mask, rpn_rois, rpn_class, rpn_bbox],
                             name='mask_rcnn')

        # Add multi-GPU support.
        if config.GPU_COUNT > 1:
            from mrcnn.parallel_model import ParallelModel
            model = ParallelModel(model, config.GPU_COUNT)

        return model

    def find_last(self):
        """Finds the last checkpoint file of the last trained model in the
        model directory.
        Returns:
            log_dir: The directory where events and weights are saved
            checkpoint_path: the path to the last checkpoint file
        """
        # Get directory names. Each directory corresponds to a model
        dir_names = next(os.walk(self.model_dir))[1]
        key = self.config.NAME.lower()
        dir_names = filter(lambda f: f.startswith(key), dir_names)
        dir_names = sorted(dir_names)
        if not dir_names:
            return None, None
        # Pick last directory
        dir_name = os.path.join(self.model_dir, dir_names[-1])
        # Find the last checkpoint
        checkpoints = next(os.walk(dir_name))[2]
        checkpoints = filter(lambda f: f.startswith("mask_rcnn"), checkpoints)
        checkpoints = sorted(checkpoints)
        if not checkpoints:
            return dir_name, None
        checkpoint = os.path.join(dir_name, checkpoints[-1])
        return dir_name, checkpoint

    def load_weights(self, filepath, by_name=False, exclude=None):
        """Modified version of the correspoding Keras function with
        the addition of multi-GPU support and the ability to exclude
        some layers from loading.
        exlude: list of layer names to excluce
        """
        import h5py
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
        # from keras.engine import saving
        # Replaced according to code on https://github.com/matterport/Mask_RCNN/blob/master/mrcnn/model.py by:

        # Conditional import to support versions of Keras before 2.2
        # TODO: remove in about 6 months (end of 2018)
        try:
            from keras.engine import saving
        except ImportError:
            # Keras before 2.2 used the 'topology' namespace.
            from keras.engine import topology as saving
nikhil_rayaprolu's avatar
nikhil_rayaprolu committed
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104

        if exclude:
            by_name = True

        if h5py is None:
            raise ImportError('`load_weights` requires h5py.')
        f = h5py.File(filepath, mode='r')
        if 'layer_names' not in f.attrs and 'model_weights' in f:
            f = f['model_weights']

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        keras_model = self.keras_model
        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
            else keras_model.layers

        # Exclude some layers
        if exclude:
            layers = filter(lambda l: l.name not in exclude, layers)

        if by_name:
Ubuntu's avatar
Ubuntu committed
2105
            saving.load_weights_from_hdf5_group_by_name(f, layers)
nikhil_rayaprolu's avatar
nikhil_rayaprolu committed
2106
        else:
Ubuntu's avatar
Ubuntu committed
2107
            saving.load_weights_from_hdf5_group(f, layers)
nikhil_rayaprolu's avatar
nikhil_rayaprolu committed
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
        if hasattr(f, 'close'):
            f.close()

        # Update the log directory
        self.set_log_dir(filepath)

    def get_imagenet_weights(self):
        """Downloads ImageNet trained weights from Keras.
        Returns path to weights file.
        """
        from keras.utils.data_utils import get_file
        TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/'\
                                 'releases/download/v0.2/'\
                                 'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5'
        weights_path = get_file('resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
                                TF_WEIGHTS_PATH_NO_TOP,
                                cache_subdir='models',
                                md5_hash='a268eb855778b3df3c7506639542a6af')
        return weights_path

    def compile(self, learning_rate, momentum):
        """Gets the model ready for training. Adds losses, regularization, and
        metrics. Then calls the Keras compile() function.
        """
        # Optimizer object
        optimizer = keras.optimizers.SGD(lr=learning_rate, momentum=momentum,
                                         clipnorm=self.config.GRADIENT_CLIP_NORM)
        # Add Losses
        # First, clear previously set losses to avoid duplication
        self.keras_model._losses = []
        self.keras_model._per_input_losses = {}
        loss_names = ["rpn_class_loss", "rpn_bbox_loss",
                      "mrcnn_class_loss", "mrcnn_bbox_loss", "mrcnn_mask_loss"]
        for name in loss_names:
            layer = self.keras_model.get_layer(name)
            if layer.output in self.keras_model.losses:
                continue
            self.keras_model.add_loss(
                tf.reduce_mean(layer.output, keep_dims=True))

        # Add L2 Regularization
        # Skip gamma and beta weights of batch normalization layers.
        reg_losses = [keras.regularizers.l2(self.config.WEIGHT_DECAY)(w) / tf.cast(tf.size(w), tf.float32)
                      for w in self.keras_model.trainable_weights
                      if 'gamma' not in w.name and 'beta' not in w.name]
        self.keras_model.add_loss(tf.add_n(reg_losses))

        # Compile
        self.keras_model.compile(optimizer=optimizer, loss=[
                                 None] * len(self.keras_model.outputs))

        # Add metrics for losses
        for name in loss_names:
            if name in self.keras_model.metrics_names:
                continue
            layer = self.keras_model.get_layer(name)
            self.keras_model.metrics_names.append(name)
            self.keras_model.metrics_tensors.append(tf.reduce_mean(
                layer.output, keep_dims=True))

    def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1):
        """Sets model layers as trainable if their names match
        the given regular expression.
        """
        # Print message on the first call (but not on recursive calls)
        if verbose > 0 and keras_model is None:
            log("Selecting layers to train")

        keras_model = keras_model or self.keras_model

        # In multi-GPU training, we wrap the model. Get layers
        # of the inner model because they have the weights.
        layers = keras_model.inner_model.layers if hasattr(keras_model, "inner_model")\
            else keras_model.layers

        for layer in layers:
            # Is the layer a model?
            if layer.__class__.__name__ == 'Model':
                print("In model: ", layer.name)
                self.set_trainable(
                    layer_regex, keras_model=layer, indent=indent + 4)
                continue

            if not layer.weights:
                continue
            # Is it trainable?
            trainable = bool(re.fullmatch(layer_regex, layer.name))
            # Update layer. If layer is a container, update inner layer.
            if layer.__class__.__name__ == 'TimeDistributed':
                layer.layer.trainable = trainable
            else:
                layer.trainable = trainable
            # Print trainble layer names
            if trainable and verbose > 0:
                log("{}{:20}   ({})".format(" " * indent, layer.name,
                                            layer.__class__.__name__))

    def set_log_dir(self, model_path=None):
        """Sets the model log directory and epoch counter.

        model_path: If None, or a format different from what this code uses
            then set a new log directory and start epochs from 0. Otherwise,
            extract the log directory and the epoch counter from the file
            name.
        """
        # Set date and epoch counter as if starting a new model
        self.epoch = 0
        now = datetime.datetime.now()

        # If we have a model path with date and epochs use them
        if model_path:
            # Continue from we left of. Get epoch and date from the file name
            # A sample model path might look like:
            # /path/to/logs/coco20171029T2315/mask_rcnn_coco_0001.h5
            regex = r".*/\w+(\d{4})(\d{2})(\d{2})T(\d{2})(\d{2})/mask\_rcnn\_\w+(\d{4})\.h5"
            m = re.match(regex, model_path)
            if m:
                now = datetime.datetime(int(m.group(1)), int(m.group(2)), int(m.group(3)),
                                        int(m.group(4)), int(m.group(5)))
                # Epoch number in file is 1-based, and in Keras code it's 0-based.
                # So, adjust for that then increment by one to start from the next epoch
                self.epoch = int(m.group(6)) - 1 + 1

        # Directory for training logs
        self.log_dir = os.path.join(self.model_dir, "{}{:%Y%m%dT%H%M}".format(
            self.config.NAME.lower(), now))

        # Path to save after each epoch. Include placeholders that get filled by Keras.
        self.checkpoint_path = os.path.join(self.log_dir, "mask_rcnn_{}_*epoch*.h5".format(
            self.config.NAME.lower()))
        self.checkpoint_path = self.checkpoint_path.replace(
            "*epoch*", "{epoch:04d}")

    def train(self, train_dataset, val_dataset, learning_rate, epochs, layers,
              augmentation=None):
        """Train the model.
        train_dataset, val_dataset: Training and validation Dataset objects.
        learning_rate: The learning rate to train with
        epochs: Number of training epochs. Note that previous training epochs
                are considered to be done alreay, so this actually determines
                the epochs to train in total rather than in this particaular
                call.
        layers: Allows selecting wich layers to train. It can be:
            - A regular expression to match layer names to train
            - One of these predefined values:
              heaads: The RPN, classifier and mask heads of the network
              all: All the layers
              3+: Train Resnet stage 3 and up
              4+: Train Resnet stage 4 and up
              5+: Train Resnet stage 5 and up
        augmentation: Optional. An imgaug (https://github.com/aleju/imgaug)
            augmentation. For example, passing imgaug.augmenters.Fliplr(0.5)
            flips images right/left 50% of the time. You can pass complex
            augmentations as well. This augmentation applies 50% of the
            time, and when it does it flips images right/left half the time
            and adds a Gausssian blur with a random sigma in range 0 to 5.

                augmentation = imgaug.augmenters.Sometimes(0.5, [
                    imgaug.augmenters.Fliplr(0.5),
                    imgaug.augmenters.GaussianBlur(sigma=(0.0, 5.0))
                ])
        """
        assert self.mode == "training", "Create model in training mode."

        # Pre-defined layer regular expressions
        layer_regex = {
            # all layers but the backbone
            "heads": r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            # From a specific Resnet stage and up
            "3+": r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            "4+": r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            "5+": r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)",
            # All layers
            "all": ".*",
        }
        if layers in layer_regex.keys():
            layers = layer_regex[layers]

        # Data generators
        train_generator = data_generator(train_dataset, self.config, shuffle=True,
                                         augmentation=augmentation,
                                         batch_size=self.config.BATCH_SIZE)
        val_generator = data_generator(val_dataset, self.config, shuffle=True,
                                       batch_size=self.config.BATCH_SIZE)

        # Callbacks
        callbacks = [
	    EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=10),
            keras.callbacks.TensorBoard(log_dir=self.log_dir,
                                        histogram_freq=0, write_graph=True, write_images=False),
            keras.callbacks.ModelCheckpoint(self.checkpoint_path,
                                            verbose=0,save_best_only=True, save_weights_only=True),
        ]

        # Train
        log("\nStarting at epoch {}. LR={}\n".format(self.epoch, learning_rate))
        log("Checkpoint Path: {}".format(self.checkpoint_path))
        self.set_trainable(layers)
        self.compile(learning_rate, self.config.LEARNING_MOMENTUM)

        # Work-around for Windows: Keras fails on Windows when using
        # multiprocessing workers. See discussion here:
        # https://github.com/matterport/Mask_RCNN/issues/13#issuecomment-353124009
        if os.name is 'nt':
            workers = 0
        else:
            workers = multiprocessing.cpu_count()

        self.keras_model.fit_generator(
            train_generator,
            initial_epoch=self.epoch,
            epochs=epochs,
            steps_per_epoch=self.config.STEPS_PER_EPOCH,
            callbacks=callbacks,
            validation_data=val_generator,
            validation_steps=self.config.VALIDATION_STEPS,
            max_queue_size=1